Skip to content
Related Articles

Related Articles

numpy.geomspace() in Python
  • Last Updated : 29 Nov, 2018

numpy.geomspace() is used to return numbers spaced evenly on a log scale (a geometric progression).
This is similar to numpy.logspace() but with endpoints specified directly. Each output sample is a constant multiple of the previous.

Syntax : numpy.geomspace(start, stop, num=50, endpoint=True, dtype=None)

Parameters :
start : [scalar] The starting value of the sequence.
stop : [scalar] The final value of the sequence, unless endpoint is False. In that case, num + 1 values are spaced over the interval in log-space, of which all but the last (a sequence of length num) are returned.
num : [integer, optional] Number of samples to generate. Default is 50.
endpoint : [boolean, optional] If true, stop is the last sample. Otherwise, it is not included. Default is True.
dtype : [dtype] The type of the output array. If dtype is not given, infer the data type from the other input arguments.

Return :
samples : [ndarray] num samples, equally spaced on a log scale.

Code #1 : Working






# Python3 Program demonstrate
# numpy.geomspace() function
  
import numpy as geek
  
  
print("B\n", geek.geomspace(2.0, 3.0, num = 5), "\n")
  
# To evaluate sin() in long range 
point = geek.geomspace(1, 2, 10)
print("A\n", geek.sin(point))


Output :

B
 [ 2.          2.21336384  2.44948974  2.71080601  3.        ] 

A
 [ 0.84147098  0.88198596  0.91939085  0.95206619  0.9780296   0.9948976
  0.99986214  0.98969411  0.96079161  0.90929743]

 
Code #2 : Graphical Representation of numpy.geomspace()




# Graphical Represenation of numpy.geomspace()
import numpy as geek 
import pylab as p 
% matplotlib inline  
  
# Start = 1 
# End = 3 
  
# Samples to generate = 10 
x1 = geek.geomspace(1, 3, 10, endpoint = False
y1 = geek.ones(10
    
p.plot(x1, y1, '+'


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :