Skip to content
Related Articles

Related Articles

numpy.exp2() in Python
  • Last Updated : 29 Nov, 2018

numpy.exp2(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate 2**x for all x being the array elements.

Parameters :

array : [array_like]Input array or object whose elements, we need to test.
out : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.

Return :

An array with 2**x(power of 2) for all x i.e. array elements 

 
Code 1 : Working






# Python program explaining
# exp2() function
import numpy as np
  
in_array = [1, 3, 5, 4]
print ("Input array : \n", in_array)
  
exp2_values = np.exp2(in_array)
print ("\n2**x values : \n", exp2_values)


Output :

Input array : 
 [1, 3, 5, 4]

2**x values : 
 [  2.   8.  32.  16.]

 
Code 2 : Graphical representation




# Python program showing
# Graphical representation of 
# exp2() function
import numpy as np
import matplotlib.pyplot as plt
  
in_array = [1, 2, 3, 4, 5 ,6]
out_array = np.exp2(in_array)
  
print("out_array : ", out_array)
  
y = [1, 2, 3, 4, 5 ,6]
plt.plot(in_array, y, color = 'blue', marker = "*")
  
# red for numpy.exp2()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.exp2()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()  


Output :
out_array : [ 2. 4. 8. 16. 32. 64.]

References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp2.html
.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :