numpy.exp() in Python
numpy.exp(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) :
This mathematical function helps user to calculate exponential of all the elements in the input array.
Parameters :
array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Return :
An array with exponential of all elements of input array.
Code 1 : Working
# Python program explaining # exp() function import numpy as np in_array = [ 1 , 3 , 5 ] print ( "Input array : " , in_array) out_array = np.exp(in_array) print ( "Output array : " , out_array) |
Output :
Input array : [1, 3, 5] Output array : [ 2.71828183 20.08553692 148.4131591 ]
Code 2 : Graphical representation
# Python program showing # Graphical representation of # exp() function import numpy as np import matplotlib.pyplot as plt in_array = [ 1 , 1.2 , 1.4 , 1.6 , 1.8 , 2 ] out_array = np.exp(in_array) y = [ 1 , 1.2 , 1.4 , 1.6 , 1.8 , 2 ] plt.plot(in_array, y, color = 'blue' , marker = "*" ) # red for numpy.exp() plt.plot(out_array, y, color = 'red' , marker = "o" ) plt.title( "numpy.exp()" ) plt.xlabel( "X" ) plt.ylabel( "Y" ) plt.show() |
Output :
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp.html
.
Please Login to comment...