Skip to content
Related Articles

Related Articles

numpy.argmin() in Python
  • Last Updated : 04 Dec, 2020

The numpy.argmin() method returns indices of the min element of the array in a particular axis.
Syntax :

numpy.argmin(array, axis = None, out = None)

Parameters :

array : Input array to work on 
axis  : [int, optional]Along a specified axis like 0 or 1
out   : [array optional]Provides a feature to insert output to the out
          array and it should be of appropriate shape and dtype

Return :

Array of indices into the array with same shape as array.shape
 with the dimension along axis removed.

Code 1 :




# Python Program illustrating
# working of argmin()
  
import numpy as geek 
  
# Working on 1D array
array = geek.arange(8)
print("INPUT ARRAY : \n", array)
  
  
# returning Indices of the min element
# as per the indices
print("\nIndices of min element : ", geek.argmin(array, axis=0))


Output :



INPUT ARRAY : 
 [0 1 2 3 4 5 6 7]

Indices of min element :  0

Code 2 :




# Python Program illustarting
# working of argmin()
  
import numpy as geek 
  
# Working on 2D array
array =  geek.random.randint(16, size=(4, 4))
print("INPUT ARRAY : \n", array)
  
# returning Indices of the min element
# as per the indices
  
'''   
   [[ 8 13  5  0]
   [ 0  2  5  3]
   [10  7 15 15]
   [ 3 11  4 12]]
     ^  ^  ^  ^
     0  2  4  0  - element
     1  1  3  0  - indices
'''
print("\nIndices of min element : ", geek.argmin(array, axis = 0))


Output :

INPUT ARRAY : 
 [[ 8 13  5  0]
 [ 0  2  5  3]
 [10  7 15 15]
 [ 3 11  4 12]]

Indices of min element :  [1 1 3 0]

Code 3 :




# Python Program illustarting
# working of argmin()
  
import numpy as geek 
  
# Working on 2D array
array =  geek.arange(10).reshape(2, 5)
print("array : \n", array)
  
array[0][0] = 10
array[1][1] = 1
array[0][1] = 1
print("\narray : \n", array)
       
# Returns min element
print("\narray : ", geek.argmin(array))
  
# First occurrence of an min element is given
print("\nmin ELEMENT INDICES : ", geek.argmin(array, axis = 0))


Output :

array : 
 [[0 1 2 3 4]
 [5 6 7 8 9]]

array : 
 [[10  1  2  3  4]
 [ 5  1  7  8  9]]

array :  1

min ELEMENT INDICES :  [1 0 0 0 0]

References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.argmin.html#numpy.argmin

Note :
These codes won’t run on online-ID. Please run them on your systems to explore the working
.
This article is contributed by Mohit Gupta_OMG 😀. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up