numpy.arccosh() in Python

numpy.arccosh() : This mathematical function helps user to calculate inverse hyperbolic cosine, element-wise for all arr.

Syntax :

numpy.arccosh(arr, /, out=None, *, where=True,
casting=’same_kind’, order=’K’, dtype=None, ufunc ‘arccosh’)



Parameters :

arr : array_like
Input array.
out : [ndarray, optional] A location into which the result is stored.
  -> If provided, it must have a shape that the inputs broadcast to.
  -> If not provided or None, a freshly-allocated array is returned.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs :Allows to pass keyword variable length of argument to a function. Used when we want to handle named argument in a function.

Return : An array with inverse hyperbolic cosine of arr
for all arr i.e. array elements.

Note :



2pi Radians = 360 degrees
The convention is to return the angle of arr whose imaginary part lies in [-pi, pi] and the real part in [0, inf].

 
Code #1 : Working

# Python program explaining
# arccosh() function
  
import numpy as np
  
in_array = [2, 1, 10, 100]
print ("Input array : \n", in_array)
  
arccosh_Values = np.arccosh(in_array)
print ("\nInverse hyperbolic Cosine values : \n", arccosh_Values)

Output :

Input array : 
 [2, 1, 10, 100]

Inverse hyperbolic Cosine values : 
 [ 1.3169579   0.          2.99322285  5.29829237]

 
Code #2 : Graphical representation

# Python program showing
# Graphical representation  
# of arccosh() function
%matplotlib inline 
import numpy as np
import matplotlib.pyplot as plt
in_array = np.linspace(1, np.pi, 18)
out_array1 = np.cos(in_array)
out_array2 = np.arccosh(in_array)
   
print("in_array : ", in_array)
print("\nout_array with cos : ", out_array1)
print("\nout_array with arccosh : ", out_array2)
#blue for numpy.cosh() 
# red for numpy.arccosh()
plt.plot(in_array, out_array1,
            color = 'blue', marker = ".")
               
plt.plot(in_array, out_array2,
            color = 'red', marker = "+")
               
plt.title("blue : numpy.cos() \nred : numpy.arccosh()")
plt.xlabel("X")
plt.ylabel("Y")

Output :


in_array :  [ 1.          1.12597604  1.25195208  1.37792812  1.50390415  1.62988019
  1.75585623  1.88183227  2.00780831  2.13378435  2.25976038  2.38573642
  2.51171246  2.6376885   2.76366454  2.88964058  3.01561662  3.14159265]

out_array with cos :  [ 0.54030231  0.43029566  0.31346927  0.19167471  0.0668423  -0.0590495
 -0.18400541 -0.30604504 -0.42323415 -0.53371544 -0.63573787 -0.72768451
 -0.80809809 -0.87570413 -0.92943115 -0.96842762 -0.99207551 -1.        ]

out_array with arccosh :  [ 0.          0.49682282  0.69574433  0.84411504  0.96590748  1.07053332
  1.16287802  1.24587516  1.32145434  1.39096696  1.45540398  1.51551804
  1.57189678  1.62500948  1.67523791  1.7228975   1.76825238  1.81152627]

)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.