# Number of unique triplets whose XOR is zero

Given N numbers with no duplicates, count the number of unique triplets (ai, aj, ak) such that their XOR is 0. A triplet is said to be unique if all of the three numbers in the triplet is unique.

Examples:

```Input : a[] = {1, 3, 5, 10, 14, 15};
Output : 2
Explanation : {1, 14, 15} and {5, 10, 15} are the
unique triplets whose XOR is 0.
{1, 14, 15} and all other combinations of
1, 14, 15 are considered as 1 only.

Input : a[] = {4, 7, 5, 8, 3, 9};
Output : 1
Explanation : {4, 7, 3} is the only triplet whose XOR is 0
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach: A naive approach is to run three nested loops, the first runs from 0 to n, second from i+1 to n, and the last one from j+1 to n to get the unique triplets. Calculate the XOR of ai, aj, ak, check if it equals to 0, if so, then increase the count.
Time Complexity : O(n3)

Efficient Approach: An efficient approach is to use one of the properties of XOR that XOR of two same numbers gives 0. So we need to calculate XOR of unique pairs only, and if the calculated XOR is one of the array element, then we get the triplet whose XOR is 0. Given below are the steps for counting the number of unique triplets:

Below is the complete algorithm of this approach:

1. With map, mark all the array elements.
2. Run two nested loops, one from i-n, and the other from i+1-n to get all the pairs.
3. Obtain the XOR of pair.
4. Check if the XOR is an array element and not one of ai or aj.
5. Increase the count if the condition holds.
6. Return count/3 as we only want unique triplets. Since i-n and j+1-n gives us unique pairs but not triplets, so we do a count/3 to remove the other two possible combinations.

Below is the implementation of above idea:

## C++

 `// CPP program to count the number of ` `// unique triplets whose XOR is 0 ` `#include ` `using` `namespace` `std; ` ` `  `// function to count the number of  ` `// unique triplets whose xor is 0 ` `int` `countTriplets(``int` `a[], ``int` `n)  ` `{ ` `    ``// To store values that are present ` `    ``unordered_set<``int``> s; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``s.insert(a[i]); ` `     `  `    ``// stores the count of unique triplets ` `    ``int` `count = 0; ` `     `  `    ``// traverse for all i, j pairs such that j>i ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = i + 1; j < n; j++) { ` ` `  `          ``// xor of a[i] and a[j] ` `          ``int` `xr = a[i] ^ a[j]; ` `     `  `          ``// if xr of two numbers is present,  ` `          ``// then increase the count ` `          ``if` `(s.find(xr) != s.end() && xr != a[i] &&  ` `                                       ``xr != a[j]) ` `            ``count++; ` `        ``} ` `    ``} ` `     `  `    ``// returns answer ` `    ``return` `count / 3; ` `} ` ` `  `// Driver code to test above function ` `int` `main()  ` `{ ` `    ``int` `a[] = {1, 3, 5, 10, 14, 15}; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a);    ` `    ``cout << countTriplets(a, n);     ` `    ``return` `0; ` `} `

## Java

 `// Java program to count  ` `// the number of unique  ` `// triplets whose XOR is 0 ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` `    ``// function to count the  ` `    ``// number of unique triplets ` `    ``// whose xor is 0 ` `    ``static` `int` `countTriplets(``int` `[]a,  ` `                             ``int` `n)  ` `    ``{ ` `        ``// To store values  ` `        ``// that are present ` `        ``ArrayList s =  ` `                  ``new` `ArrayList(); ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``s.add(a[i]); ` `         `  `        ``// stores the count  ` `        ``// of unique triplets ` `        ``int` `count = ``0``; ` `         `  `        ``// traverse for all i,  ` `        ``// j pairs such that j>i ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{ ` `            ``for` `(``int` `j = i + ``1``;  ` `                     ``j < n; j++) ` `            ``{ ` `     `  `            ``// xor of a[i] and a[j] ` `            ``int` `xr = a[i] ^ a[j]; ` `         `  `            ``// if xr of two numbers  ` `            ``// is present, then  ` `            ``// increase the count ` `            ``if` `(s.contains(xr) && ` `                ``xr != a[i] && xr != a[j]) ` `                ``count++; ` `            ``} ` `        ``} ` `         `  `        ``// returns answer ` `        ``return` `count / ``3``; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main(String srgs[]) ` `    ``{ ` `        ``int` `[]a = {``1``, ``3``, ``5``,  ` `                   ``10``, ``14``, ``15``}; ` `        ``int` `n = a.length; ` `        ``System.out.print(countTriplets(a, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by  ` `// Manish Shaw(manishshaw1) `

## Python3

 `# Python 3 program to count the number of ` `# unique triplets whose XOR is 0 ` ` `  `# function to count the number of  ` `# unique triplets whose xor is 0 ` `def` `countTriplets(a, n): ` `     `  `    ``# To store values that are present ` `    ``s ``=` `set``() ` `    ``for` `i ``in` `range``(n): ` `        ``s.add(a[i]) ` `     `  `    ``# stores the count of unique triplets ` `    ``count ``=` `0` `     `  `    ``# traverse for all i, j pairs such that j>i ` `    ``for` `i ``in` `range``(n): ` `        ``for` `j ``in` `range``(i ``+` `1``, n, ``1``): ` `             `  `            ``# xor of a[i] and a[j] ` `            ``xr ``=` `a[i] ^ a[j] ` `             `  `            ``# if xr of two numbers is present, ` `            ``# then increase the count ` `            ``if` `(xr ``in` `s ``and` `xr !``=` `a[i] ``and`  `                            ``xr !``=` `a[j]): ` `                ``count ``+``=` `1``; ` `         `  `    ``# returns answer ` `    ``return` `int``(count ``/` `3``) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``a ``=` `[``1``, ``3``, ``5``, ``10``, ``14``, ``15``] ` `    ``n ``=` `len``(a)  ` `    ``print``(countTriplets(a, n))  ` `     `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# program to count  ` `// the number of unique  ` `// triplets whose XOR is 0 ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` `    ``// function to count the  ` `    ``// number of unique triplets ` `    ``// whose xor is 0 ` `    ``static` `int` `countTriplets(``int` `[]a,  ` `                             ``int` `n)  ` `    ``{ ` `        ``// To store values  ` `        ``// that are present ` `        ``List<``int``> s = ``new` `List<``int``>(); ` `        ``for` `(``int` `i = 0; i < n; i++) ` `            ``s.Add(a[i]); ` `         `  `        ``// stores the count  ` `        ``// of unique triplets ` `        ``int` `count = 0; ` `         `  `        ``// traverse for all i,  ` `        ``// j pairs such that j>i ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{ ` `            ``for` `(``int` `j = i + 1;  ` `                     ``j < n; j++) ` `            ``{ ` `     `  `            ``// xor of a[i] and a[j] ` `            ``int` `xr = a[i] ^ a[j]; ` `         `  `            ``// if xr of two numbers  ` `            ``// is present, then  ` `            ``// increase the count ` `            ``if` `(s.Exists(item => item == xr) && ` `                   ``xr != a[i] && xr != a[j]) ` `                ``count++; ` `            ``} ` `        ``} ` `         `  `        ``// returns answer ` `        ``return` `count / 3; ` `    ``} ` `     `  `    ``// Driver code ` `    ``static` `void` `Main() ` `    ``{ ` `        ``int` `[]a = ``new` `int``[]{1, 3, 5,  ` `                            ``10, 14, 15}; ` `        ``int` `n = a.Length; ` `        ``Console.Write(countTriplets(a, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by  ` `// Manish Shaw(manishshaw1) `

Output:

```2
```

Time Complexity : O(n2)

My Personal Notes arrow_drop_up Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.