# Number of ways to arrange N items under given constraints

We are given N items which are of total K different colors. Items of the same color are indistinguishable and colors can be numbered from 1 to K and count of items of each color is also given as k1, k2 and so on. Now we need to arrange these items one by one under a constraint that the last item of color i comes before the last item of color (i + 1) for all possible colors. Our goal is to find out how many ways this can be achieved.

Examples:

```Input : N = 3
k1 = 1    k2 = 2
Output : 2
Explanation :
Possible ways to arrange are,
k1, k2, k2
k2, k1, k2

Input : N = 4
k1 = 2    k2 = 2
Output : 3
Explanation :
Possible ways to arrange are,
k1, k2, k1, k2
k1, k1, k2, k2
k2, k1, k1, k2
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We can solve this problem using dynamic programming. Let dp[i] stores the number of ways to arrange first i colored items. For one colored item answer will be one because there is only one way. Now Let’s assume all items are in a sequence. Now, to go from dp[i] to dp[i + 1], we need to put at least one item of color (i + 1) at the very end, but the other items of color (i + 1) can go anywhere in the sequence. The number of ways to arrange the item of color (i + 1) is combination of (k1 + k2 .. + ki + k(i + 1) – 1) over (k(i + 1) – 1) which can be represented as (k1 + k2 .. + ki + k(i + 1) – 1)C(k(i + 1) – 1). In this expression we subtracted one because we need to put one item at the very end.
In below code, first we have calculated the combination values, you can read more about that from here. After that we looped over all different color and calculated the final value using above relation.

## C++

 `// C++ program to find number of ways to arrange ` `// items under given constraint ` `#include ` `using` `namespace` `std; ` ` `  `// method returns number of ways with which items  ` `// can be arranged ` `int` `waysToArrange(``int` `N, ``int` `K, ``int` `k[]) ` `{ ` `    ``int` `C[N + 1][N + 1]; ` `    ``int` `i, j; ` ` `  `    ``// Calculate value of Binomial Coefficient in  ` `    ``// bottom up manner ` `    ``for` `(i = 0; i <= N; i++) { ` `        ``for` `(j = 0; j <= i; j++) { ` ` `  `            ``// Base Cases ` `            ``if` `(j == 0 || j == i) ` `                ``C[i][j] = 1; ` ` `  `            ``// Calculate value using previously  ` `            ``// stored values ` `            ``else` `                ``C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]); ` `        ``} ` `    ``} ` ` `  `    ``// declare dp array to store result up to ith  ` `    ``// colored item ` `    ``int` `dp[K]; ` ` `  `    ``// variable to keep track of count of items  ` `    ``// considered till now ` `    ``int` `count = 0; ` ` `  `    ``dp = 1; ` ` `  `    ``// loop over all different colors ` `    ``for` `(``int` `i = 0; i < K; i++) { ` ` `  `        ``// populate next value using current value  ` `        ``// and stated relation ` `        ``dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]); ` `        ``count += k[i]; ` `    ``} ` ` `  `    ``// return value stored at last index ` `    ``return` `dp[K]; ` `} ` ` `  `// Driver code to test above methods ` `int` `main() ` `{ ` `    ``int` `N = 4; ` `    ``int` `k[] = { 2, 2 }; ` ` `  `    ``int` `K = ``sizeof``(k) / ``sizeof``(``int``); ` `    ``cout << waysToArrange(N, K, k) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find number of ways to arrange  ` `// items under given constraint  ` `class` `GFG  ` `{ ` ` `  `    ``// method returns number of ways with which items  ` `    ``// can be arranged  ` `    ``static` `int` `waysToArrange(``int` `N, ``int` `K, ``int``[] k)  ` `    ``{ ` `        ``int``[][] C = ``new` `int``[N + ``1``][N + ``1``]; ` `        ``int` `i, j; ` ` `  `        ``// Calculate value of Binomial Coefficient in  ` `        ``// bottom up manner  ` `        ``for` `(i = ``0``; i <= N; i++)  ` `        ``{ ` `            ``for` `(j = ``0``; j <= i; j++)  ` `            ``{ ` ` `  `                ``// Base Cases  ` `                ``if` `(j == ``0` `|| j == i)  ` `                ``{ ` `                    ``C[i][j] = ``1``; ` `                ``}  ` `                 `  `                ``// Calculate value using previously  ` `                ``// stored values  ` `                ``else`  `                ``{ ` `                    ``C[i][j] = (C[i - ``1``][j - ``1``] + C[i - ``1``][j]); ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``// declare dp array to store result up to ith  ` `        ``// colored item  ` `        ``int``[] dp = ``new` `int``[K + ``1``]; ` ` `  `        ``// variable to keep track of count of items  ` `        ``// considered till now  ` `        ``int` `count = ``0``; ` ` `  `        ``dp[``0``] = ``1``; ` ` `  `        ``// loop over all different colors  ` `        ``for` `(i = ``0``; i < K; i++)  ` `        ``{ ` ` `  `            ``// populate next value using current value  ` `            ``// and stated relation  ` `            ``dp[i + ``1``] = (dp[i] * C[count + k[i] - ``1``][k[i] - ``1``]); ` `            ``count += k[i]; ` `        ``} ` ` `  `        ``// return value stored at last index  ` `        ``return` `dp[K]; ` `    ``} ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `N = ``4``; ` `        ``int``[] k = ``new` `int``[]{``2``, ``2``}; ` `        ``int` `K = k.length; ` `        ``System.out.println(waysToArrange(N, K, k)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python3

 `# Python3 program to find number of ways  ` `# to arrange items under given constraint ` `import` `numpy as np ` ` `  `# method returns number of ways with  ` `# which items can be arranged ` `def` `waysToArrange(N, K, k) : ` ` `  `    ``C ``=` `np.zeros((N ``+` `1``, N ``+` `1``)) ` ` `  `    ``# Calculate value of Binomial  ` `    ``# Coefficient in bottom up manner ` `    ``for` `i ``in` `range``(N ``+` `1``) : ` `        ``for` `j ``in` `range``(i ``+` `1``) : ` ` `  `            ``# Base Cases ` `            ``if` `(j ``=``=` `0` `or` `j ``=``=` `i) : ` `                ``C[i][j] ``=` `1` ` `  `            ``# Calculate value using previously  ` `            ``# stored values ` `            ``else` `: ` `                ``C[i][j] ``=` `(C[i ``-` `1``][j ``-` `1``] ``+` `                           ``C[i ``-` `1``][j]) ` ` `  `    ``# declare dp array to store result  ` `    ``# up to ith colored item ` `    ``dp ``=` `np.zeros((K ``+` `1``)) ` ` `  `    ``# variable to keep track of count  ` `    ``# of items considered till now ` `    ``count ``=` `0` ` `  `    ``dp[``0``] ``=` `1` ` `  `    ``# loop over all different colors ` `    ``for` `i ``in` `range``(K) : ` ` `  `        ``# populate next value using current  ` `        ``# value and stated relation ` `        ``dp[i ``+` `1``] ``=` `(dp[i] ``*` `C[count ``+` `k[i] ``-` `1``][k[i] ``-` `1``]) ` `        ``count ``+``=` `k[i] ` `     `  `    ``# return value stored at last index ` `    ``return` `dp[K] ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: ` ` `  `    ``N ``=` `4` `    ``k ``=` `[ ``2``, ``2` `] ` ` `  `    ``K ``=` `len``(k) ` `    ``print``(``int``(waysToArrange(N, K, k))) ` ` `  `# This code is contributed by Ryuga  `

## C#

 `// C# program to find number of ways to arrange  ` `// items under given constraint  ` `using` `System;  ` ` `  `class` `GFG  ` `{  ` `    ``// method returns number of ways with which items  ` `    ``// can be arranged  ` `    ``static` `int` `waysToArrange(``int` `N, ``int` `K, ``int``[] k)  ` `    ``{  ` `        ``int``[,] C = ``new` `int``[N + 1, N + 1];  ` `        ``int` `i, j;  ` `     `  `        ``// Calculate value of Binomial Coefficient in  ` `        ``// bottom up manner  ` `        ``for` `(i = 0; i <= N; i++)   ` `        ``{  ` `            ``for` `(j = 0; j <= i; j++) ` `            ``{  ` `     `  `                ``// Base Cases  ` `                ``if` `(j == 0 || j == i)  ` `                    ``C[i, j] = 1;  ` `     `  `                ``// Calculate value using previously  ` `                ``// stored values  ` `                ``else` `                    ``C[i, j] = (C[i - 1, j - 1] + C[i - 1,  j]);  ` `            ``}  ` `        ``}  ` `     `  `        ``// declare dp array to store result up to ith  ` `        ``// colored item  ` `        ``int``[] dp = ``new` `int``[K + 1];  ` `     `  `        ``// variable to keep track of count of items  ` `        ``// considered till now  ` `        ``int` `count = 0;  ` `     `  `        ``dp = 1;  ` `     `  `        ``// loop over all different colors  ` `        ``for` `(i = 0; i < K; i++) {  ` `     `  `            ``// populate next value using current value  ` `            ``// and stated relation  ` `            ``dp[i + 1] = (dp[i] * C[count + k[i] - 1, k[i] - 1]);  ` `            ``count += k[i];  ` `        ``}  ` `     `  `        ``// return value stored at last index  ` `        ``return` `dp[K];  ` `    ``}  ` `     `  `    ``// Driver code   ` `    ``static` `void` `Main()  ` `    ``{  ` `        ``int` `N = 4;  ` `        ``int``[] k = ``new` `int``[]{ 2, 2 };  ` `        ``int` `K = k.Length;  ` `        ``Console.Write(waysToArrange(N, K, k));  ` `    ``} ` `} ` ` `  `// This code is contributed by DrRoot_ `

## PHP

 ` `

Output:

```3
```

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.