We are given N items which are of total K different colors. Items of the same color are indistinguishable and colors can be numbered from 1 to K and count of items of each color is also given as k1, k2, and so on. Now we need to arrange these items one by one under the constraint that the last item of color i comes before the last item of color (i + 1) for all possible colors. Our goal is to find out how many ways this can be achieved.
Examples:
Input : N = 3
k1 = 1 k2 = 2
Output : 2
Explanation :
Possible ways to arrange are,
k1, k2, k2
k2, k1, k2
Input : N = 4
k1 = 2 k2 = 2
Output : 3
Explanation :
Possible ways to arrange are,
k1, k2, k1, k2
k1, k1, k2, k2
k2, k1, k1, k2
Method 1:
We can solve this problem using dynamic programming. Let dp[i] stores the number of ways to arrange first i colored items. For one colored item answer will be one because there is only one way. Now Let’s assume all items are in a sequence. Now, to go from dp[i] to dp[i + 1], we need to put at least one item of color (i + 1) at the very end, but the other items of color (i + 1) can go anywhere in the sequence. The number of ways to arrange the item of color (i + 1) is combination of (k1 + k2 .. + ki + k(i + 1) – 1) over (k(i + 1) – 1) which can be represented as (k1 + k2 .. + ki + k(i + 1) – 1)C(k(i + 1) – 1). In this expression we subtracted one because we need to put one item at the very end.
In the below code, first, we have calculated the combination values, you can read more about that from here. After that we looped over all the different colors and calculated the final value using the above relation.
C++
#include <bits/stdc++.h>
using namespace std;
int waysToArrange( int N, int K, int k[])
{
int C[N + 1][N + 1];
int i, j;
for (i = 0; i <= N; i++) {
for (j = 0; j <= i; j++) {
if (j == 0 || j == i)
C[i][j] = 1;
else
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]);
}
}
int dp[K];
int count = 0;
dp[0] = 1;
for ( int i = 0; i < K; i++) {
dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]);
count += k[i];
}
return dp[K];
}
int main()
{
int N = 4;
int k[] = { 2, 2 };
int K = sizeof (k) / sizeof ( int );
cout << waysToArrange(N, K, k) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int waysToArrange( int N, int K, int [] k)
{
int [][] C = new int [N + 1 ][N + 1 ];
int i, j;
for (i = 0 ; i <= N; i++) {
for (j = 0 ; j <= i; j++) {
if (j == 0 || j == i) {
C[i][j] = 1 ;
}
else {
C[i][j]
= (C[i - 1 ][j - 1 ] + C[i - 1 ][j]);
}
}
}
int [] dp = new int [K + 1 ];
int count = 0 ;
dp[ 0 ] = 1 ;
for (i = 0 ; i < K; i++) {
dp[i + 1 ]
= (dp[i] * C[count + k[i] - 1 ][k[i] - 1 ]);
count += k[i];
}
return dp[K];
}
public static void main(String[] args)
{
int N = 4 ;
int [] k = new int [] { 2 , 2 };
int K = k.length;
System.out.println(waysToArrange(N, K, k));
}
}
|
Python3
import numpy as np
def waysToArrange(N, K, k) :
C = np.zeros((N + 1 , N + 1 ))
for i in range (N + 1 ) :
for j in range (i + 1 ) :
if (j = = 0 or j = = i) :
C[i][j] = 1
else :
C[i][j] = (C[i - 1 ][j - 1 ] +
C[i - 1 ][j])
dp = np.zeros((K + 1 ))
count = 0
dp[ 0 ] = 1
for i in range (K) :
dp[i + 1 ] = (dp[i] * C[count + k[i] - 1 ][k[i] - 1 ])
count + = k[i]
return dp[K]
if __name__ = = "__main__" :
N = 4
k = [ 2 , 2 ]
K = len (k)
print ( int (waysToArrange(N, K, k)))
|
C#
using System;
class GFG
{
static int waysToArrange( int N, int K, int [] k)
{
int [,] C = new int [N + 1, N + 1];
int i, j;
for (i = 0; i <= N; i++)
{
for (j = 0; j <= i; j++)
{
if (j == 0 || j == i)
C[i, j] = 1;
else
C[i, j] = (C[i - 1, j - 1] + C[i - 1, j]);
}
}
int [] dp = new int [K + 1];
int count = 0;
dp[0] = 1;
for (i = 0; i < K; i++) {
dp[i + 1] = (dp[i] * C[count + k[i] - 1, k[i] - 1]);
count += k[i];
}
return dp[K];
}
static void Main()
{
int N = 4;
int [] k = new int []{ 2, 2 };
int K = k.Length;
Console.Write(waysToArrange(N, K, k));
}
}
|
PHP
<?php
function waysToArrange( $N , $K , $k )
{
$C [ $N + 1][ $N + 1] = array ( array ());
for ( $i = 0; $i <= $N ; $i ++)
{
for ( $j = 0; $j <= $i ; $j ++)
{
if ( $j == 0 || $j == $i )
$C [ $i ][ $j ] = 1;
else
$C [ $i ][ $j ] = ( $C [ $i - 1][ $j - 1] +
$C [ $i - 1][ $j ]);
}
}
$dp [ $K ] = array ();
$count = 0;
$dp [0] = 1;
for ( $i = 0; $i < $K ; $i ++)
{
$dp [ $i + 1] = ( $dp [ $i ] * $C [ $count +
$k [ $i ] - 1][ $k [ $i ] - 1]);
$count += $k [ $i ];
}
return $dp [ $K ];
}
$N = 4;
$k = array ( 2, 2 );
$K = sizeof( $k );
echo waysToArrange( $N , $K , $k ), "\n" ;
?>
|
Javascript
<script>
function waysToArrange(N, K, k)
{
let C = new Array(N + 1);
for (let i = 0; i < C.length; i++) {
C[i] = new Array(2);
}
let i, j;
for (i = 0; i <= N; i++)
{
for (j = 0; j <= i; j++)
{
if (j == 0 || j == i)
{
C[i][j] = 1;
}
else
{
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]);
}
}
}
let dp = Array.from({length: K+1}, (_, i) => 0);
let count = 0;
dp[0] = 1;
for (i = 0; i < K; i++)
{
dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]);
count += k[i];
}
return dp[K];
}
let N = 4;
let k = [2, 2];
let K = k.length;
document.write(waysToArrange(N, K, k));
</script>
|
Time Complexity: O(N2)
Auxiliary space: O(N*N)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
10 Dec, 2022
Like Article
Save Article