Skip to content
Related Articles

Related Articles

Improve Article
Number of shortest paths to reach every cell from bottom-left cell in the grid
  • Last Updated : 30 Sep, 2019

Given two number N and M. The task is to find the number of shortest paths to reach the cell(i, j) in the grid of size N × M when the moves started from the bottom-left corner

Note: cell(i, j) represents the ith row and jth column in the grid

Below image shows some of the shortest paths to reach cell(1, 4) in 4 × 4 grid

Examples :

Input : N = 3, M = 4 
Output : 1 3 6 10 
         1 2 3 4 
         1 1 1 1  

Input : N = 5, M = 2 
Output : 1 5 
         1 4 
         1 3 
         1 2 
         1 1 

Approach : An efficient approach is to compute the grid starting from the bottom-left corner.



  • The number of shortest paths to reach cell(n, i) is 1, where, 1 < = i < = M
  • The number of shortest paths to reach cell(i, 1) is 1, where, 1 < = i < = N
  • The number of shortest paths to reach cell(i, j) are the sum the number of shortest paths of cell(i-1, j) and (i, j+1), where, 1 < = j < = M and 1 < = i < = N

Below is the implementation of the above approach :

C++




// CPP program to find number of shortest paths
#include <bits/stdc++.h>
using namespace std;
  
// Function to find number of shortest paths
void NumberOfShortestPaths(int n, int m)
{
    int a[n][m];
  
    for (int i = 0; i < n; i++)
        memset(a[i], 0, sizeof(a[i]));
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) {
        for (int j = 0; j < m; j++) {
            if (j == 0 or i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
}
  
// Driver code
int main()
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
  
    return 0;
}

Java




// Java program to find number of shortest paths
class GFG
{
  
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [][]a = new int[n][m];
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) 
    {
        for (int j = 0; j < m; j++) 
        {
            if (j == 0 || i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j < m; j++) 
        {
            System.out.print(a[i][j] + " ");
        }
        System.out.println();
    }
}
  
// Driver code
public static void main(String[] args)
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
}
}
  
// This code is contributed by Princi Singh

Python3




# Python 3 program to find 
# number of shortest paths
  
# Function to find number of shortest paths
def NumberOfShortestPaths(n, m):
    a = [[0 for i in range(m)]
            for j in range(n)]
  
    for i in range(n):
        for j in range(m):
            a[i][j] = 0
  
    # Compute the grid starting from
    # the bottom-left corner
    i = n - 1
    while(i >= 0):
        for j in range(m):
            if (j == 0 or i == n - 1):
                a[i][j] = 1
            else:
                a[i][j] = a[i][j - 1] + \
                          a[i + 1][j]
  
        i -= 1
  
    # Print the grid
    for i in range(n):
        for j in range(m):
            print(a[i][j], end = " ")
        print("\n", end = "")
  
# Driver code
if __name__ == '__main__':
    n = 5
    m = 2
  
    # Function call
    NumberOfShortestPaths(n, m)
      
# This code is contributed by
# Surendra_Gangwar

C#




// C# program to find number of shortest paths
using System;
  
class GFG
{
  
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [,]a = new int[n, m];
  
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) 
    {
        for (int j = 0; j < m; j++) 
        {
            if (j == 0 || i == n - 1)
                a[i, j] = 1;
            else
                a[i, j] = a[i, j - 1] + a[i + 1, j];
        }
    }
  
    // Print the grid
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j < m; j++) 
        {
            Console.Write(a[i, j] + " ");
        }
        Console.Write("\n");
    }
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 5, m = 2;
  
    // Function call
    NumberOfShortestPaths(n, m);
}
}
  
// This code is contributed by PrinciRaj1992

Output :

1 5 
1 4 
1 3 
1 2 
1 1 

Time complexity: O(N × M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :