Related Articles

# Non-decreasing subsequence of size k with minimum sum

• Difficulty Level : Medium
• Last Updated : 24 May, 2021

Given a sequence of n integers, you have to find out the non-decreasing subsequence of length k with minimum sum. If no sequence exists output -1.
Examples :

```Input : [58 12 11 12 82 30 20 77 16 86],
k = 3
Output : 39
{11 + 12 + 16}

Input : [58 12 11 12 82 30 20 77 16 86],
k = 4
Output : 120
{11 + 12 + 20 + 77}

Input : [58 12 11 12 82 30 20 77 16 86],
k = 5
Output : 206```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Let solve(i, k) be the minimum sum of a subsequence of size k ending at index i. Then there would be two states:
1. Include current element. {solve(j, k-1) + a[i]}
2. Exclude current element. {solve(j, k)}
Our recurrence state would be:

```
dp[i][k] = min(solve(j, k-1) + a[i], solve(j, k))
if a[i] >= a[j] for all 0 <= j <= i.```

## C++

 `// C++ program to find Non-decreasing sequence``// of size k with minimum sum``#include ``using` `namespace` `std;``const` `int` `MAX = 100;``const` `int` `inf = 2e9;` `// Global table used for memoization``int` `dp[MAX][MAX];` `void` `initialize()``{``    ``for` `(``int` `i = 0; i < MAX; i++)``        ``for` `(``int` `j = 0; j < MAX; j++)``            ``dp[i][j] = -1;``}` `int` `solve(``int` `arr[], ``int` `i, ``int` `k)``{``    ``// If already computed``    ``if` `(dp[i][k] != -1)``        ``return` `dp[i][k];` `    ``// Corner cases``    ``if` `(i < 0)``        ``return` `inf;``    ``if` `(k == 1) {``        ``int` `ans = inf;``        ``for` `(``int` `j = 0; j <= i; j++)``            ``ans = min(ans, arr[j]);``        ``return` `ans;``    ``}` `    ``// Recursive computation.``    ``int` `ans = inf;``    ``for` `(``int` `j = 0; j < i; j++)``        ``if` `(arr[i] >= arr[j])``            ``ans = min(ans, min(solve(arr, j, k),``                               ``solve(arr, j, k - 1) + arr[i]));``        ``else` `{``            ``ans = min(ans, solve(arr, j, k));``        ``}` `    ``dp[i][k] = ans;``    ``return` `dp[i][k];``}` `// Driver code``int` `main()``{``    ``initialize();``    ``int` `a[] = { 58, 12, 11, 12, 82, 30,``                ``20, 77, 16, 86 };``    ``int` `n = ``sizeof``(a) / ``sizeof``(a);``    ``int` `k = 4;``    ``cout << solve(a, n - 1, k) << endl;``    ``return` `0;``}`

## Java

 `// Java program to find Non-decreasing sequence``// of size k with minimum sum``import` `java.io.*;``import` `java.util.*;` `class` `GFG {``    ``public` `static` `int` `MAX = ``100``;``    ``public` `static` `int` `inf = ``1000000``;` `    ``// Table used for memoization``    ``public` `static` `int``[][] dp = ``new` `int``[MAX][MAX];` `    ``// initialize``    ``static` `void` `initialize()``    ``{``        ``for` `(``int` `i = ``0``; i < MAX; i++)``            ``for` `(``int` `j = ``0``; j < MAX; j++)``                ``dp[i][j] = -``1``;``    ``}` `    ``// Function to find non-decreasing sequence``    ``// of size k with minimum sum``    ``static` `int` `solve(``int` `arr[], ``int` `i, ``int` `k)``    ``{``        ``// If already computed``        ``if` `(dp[i][k] != -``1``)``            ``return` `dp[i][k];` `        ``// Corner cases``        ``if` `(i < ``0``)``            ``return` `inf;``        ``if` `(k == ``1``) {``            ``int` `ans = inf;``            ``for` `(``int` `j = ``0``; j <= i; j++)``                ``ans = Math.min(ans, arr[j]);``            ``return` `ans;``        ``}` `        ``// Recursive computation``        ``int` `ans = inf;``        ``for` `(``int` `j = ``0``; j < i; j++)``            ``if` `(arr[i] >= arr[j])``                ``ans = Math.min(ans, Math.min(solve(arr, j, k), solve(arr, j, k - ``1``) + arr[i]));``            ``else``                ``ans = Math.min(ans, solve(arr, j, k));` `        ``dp[i][k] = ans;` `        ``return` `dp[i][k];``    ``}` `    ``// driver program``    ``public` `static` `void` `main(String[] args)``    ``{``        ``initialize();``        ``int` `a[] = { ``58``, ``12``, ``11``, ``12``, ``82``, ``30``,``                    ``20``, ``77``, ``16``, ``86` `};``        ``int` `n = a.length;``        ``int` `k = ``4``;``        ``System.out.println(solve(a, n - ``1``, k));``    ``}``}` `// Contributed by Pramod Kumar`

## Python

 `# Python program to find Non-decreasing sequence``# of size k with minimum sum`` ` `# Global table used for memoization``dp ``=` `[]``for` `i ``in` `xrange``(``10``*``*``2` `+` `1``):``    ``temp ``=` `[``-``1``]``*``(``10``*``*``2` `+` `1``)``    ``dp.append(temp)`` ` `def` `solve(a, i, k):``    ``if` `dp[i][k] !``=` `-``1``:  ``# Memoization``        ``return` `dp[i][k]``    ``elif` `i < ``0``: ``# out of bounds``        ``return` `float``(``'inf'``)`` ` `    ``# when there is only one element``    ``elif` `k ``=``=` `1``:   ``        ``return` `min``(a[: i ``+` `1``])`` ` `    ``# Else two cases``    ``# 1 include current element``    ``# solve(a, j, k-1) + a[i]``    ``# 2 ignore current element``    ``# solve(a, j, k)``    ``else``: ``        ``ans ``=` `float``(``'inf'``)``        ``for` `j ``in` `xrange``(i):``            ``if` `a[i] >``=` `a[j]:``                ``ans ``=` `min``(ans, solve(a, j, k), solve(a, j, k``-``1``) ``+` `a[i])``            ``else``:``                ``ans ``=` `min``(ans, solve(a, j, k))``        ``dp[i][k] ``=` `ans``        ``return` `dp[i][k]`` ` `# Driver code``a ``=` `[``58``, ``12``, ``11``, ``12``, ``82``, ``30``, ``20``, ``77``, ``16``, ``86``]       ``print` `solve(a, ``len``(a)``-``1``, ``4``)`

## C#

 `// C# program to find Non-decreasing sequence``// of size k with minimum sum``using` `System;` `class` `GFG {``    ` `    ``public` `static` `int` `MAX = 100;``    ``public` `static` `int` `inf = 1000000;` `    ``// Table used for memoization``    ``public` `static` `int``[, ] dp = ``new` `int``[MAX, MAX];` `    ``// initialize``    ``static` `void` `initialize()``    ``{``        ``for` `(``int` `i = 0; i < MAX; i++)``          ``for` `(``int` `j = 0; j < MAX; j++)``            ``dp[i, j] = -1;``    ``}` `    ``// Function to find non-decreasing``    ``// sequence of size k with minimum sum``    ``static` `int` `solve(``int``[] arr, ``int` `i, ``int` `k)``    ``{``        ``int` `ans = 0;``        ` `        ``// If already computed``        ``if` `(dp[i, k] != -1)``            ``return` `dp[i, k];` `        ``// Corner cases``        ``if` `(i < 0)``            ``return` `inf;``        ``if` `(k == 1)``        ``{``            ``ans = inf;``            ``for` `(``int` `j = 0; j <= i; j++)``            ``ans = Math.Min(ans, arr[i]);``            ``return` `ans;``        ``}` `        ``// Recursive computation``        ``ans = inf;``        ``for` `(``int` `j = 0; j < i; j++)``            ``if` `(arr[i] >= arr[j])``                ``ans = Math.Min(ans, Math.Min(solve(arr, j, k),``                               ``solve(arr, j, k - 1) + arr[i]));``            ``else``                ``ans = Math.Min(ans, solve(arr, j, k));` `        ``dp[i, k] = ans;` `        ``return` `dp[i, k];``    ``}` `    ``// driver program``    ``public` `static` `void` `Main()``    ``{``        ``initialize();``        ``int``[] a = { 58, 12, 11, 12, 82, 30,``                          ``20, 77, 16, 86 };``        ``int` `n = a.Length;``        ``int` `k = 4;``        ``Console.WriteLine(solve(a, n - 1, k));``    ``}``}` `// This code is contributed by vt_m`

## Javascript

 ``

Output:

` 120`

This article is contributed by Anuj Shah. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.