Open In App

NCERT Solutions Class 12- Mathematics Part I – Chapter 4 Determinants – Miscellaneous Exercises on Chapter 4

Last Updated : 01 May, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Question 1. Prove that the determinant [Tex]\begin{vmatrix} x & sin\theta  & cos\theta \\ -sin\theta  & -x & 1\\ cos\theta  & 1 & x \end{vmatrix}      [/Tex]is independent of θ.

Solution: 

A = [Tex]\begin{vmatrix} x & sin\theta  & cos\theta \\ -sin\theta  & -x & 1\\ cos\theta  & 1 & x \end{vmatrix}[/Tex]

A = x(x2 – 1) – sinθ(-x sinθ – cosθ) + cosθ(-sinθ + x cosθ)

A = x3 – x + x sin2θ + sinθcosθ – sinθcosθ + x cos2θ

A = x3 – x + x(sin2θ + cos2θ)

A = x3 – x + x

A = x3(Independent of θ).

Hence, it is independent of θ

Question 2. Evaluate [Tex]\begin{vmatrix} cos\alpha cos\beta   & cos\alpha sin\beta  & -sin\alpha\\ -sin\beta & cos\beta & 0\\ sin\alpha cos\beta & sin\alpha sin\beta & cos\alpha \end{vmatrix}[/Tex]

Solution: 

A = [Tex]\begin{vmatrix} cos\alpha cos\beta   & cos\alpha sin\beta  & -sin\alpha\\ -sin\beta & cos\beta & 0\\ sin\alpha cos\beta & sin\alpha sin\beta & cos\alpha \end{vmatrix}[/Tex]

Expanding along C3 

A = -sinα(-sinα sin2β – cos2β sinα) + cosα(cosα cos2β + cosα sin2β)

A = sin2α(sin2β + cos2β) + cos2α(cos2β + sin2β)

A = sin2(1) + cos2(1)

A = 1

Question 3. If A-1 =[Tex]\begin{vmatrix} 3 & -1 & 1\\ -15 & 6 &-5\\ 5 & -2 & 2 \end{vmatrix}     [/Tex]and B =[Tex]\begin{vmatrix} 1 & 2 & -2\\ -1 & 3 &0\\ 0 & -2 & 1 \end{vmatrix}     [/Tex]. Find (AB)-1

Solution:

|B| = 1(3 – 0) + 1(2 – 4) = 1

B11 = 3 – 0 = 3

B12 = 1

B13 = 2 – 0 = 2

B21 = -(2 – 4) = 2

B22 = 1 – 0 = 1

B23 = 2

B31 = 0 + 6 = 6

B32 = -(0 – 2) = 2

B33 = 3 + 2 = 5

adj B = [Tex]\begin{bmatrix} 3 & 2 & 6\\ 1 & 1 & 2\\ 2 & 2 & 5 \end{bmatrix}[/Tex]

B-1 = (adj B)/|B|

B-1[Tex]\begin{bmatrix} 3 & 2 & 6\\ 1 & 1 & 2\\ 2 & 2 & 5 \end{bmatrix}[/Tex]

Now,

(AB)-1 = B-1A-1

(AB)-1 [Tex]\begin{bmatrix} 3 & 2 & 6\\ 1 & 1 & 2\\ 1 & 2 &5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1\\ -15 & 6 & -5\\ 5 & -2 & 2 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} 9-30+30 & -3+12-12 & 3-10+12\\ 3-15+10 & -1+6-4 & 1-5+4\\ 6+12-10 & -2+12-10 & 2-10+10 \end{bmatrix}[/Tex]

(AB)-1[Tex]\begin{bmatrix} 9 & -3 & 5\\ -2 & 1 & 0\\ 8 & 0 & 2 \end{bmatrix}[/Tex]

Question 4. Let A =[Tex]\begin{bmatrix} 1 & -2 & 1\\ -2 & 3 & 1\\ 1 & 1 & 5 \end{bmatrix}    [/Tex] verify that

(i) [adj A]-1 = adj(A-1)

(ii) (A-1)-1 = A

Solution: 

A = [Tex]\begin{bmatrix} 1 & -2 & 1\\ -2 & 3 & 1\\ 1 & 1 & 5 \end{bmatrix}[/Tex]

|A| = 1(15 – 1) + 2(-10 – 1) + 1(-2 – 3) = 14 – 27 = -13

A11 = 14

A12 = 11

A13 = -5

A21 = 11

A22 = 4

A23 = -3

A31 = -5

A32 = -3

A33 = -1

adj A = [Tex]\begin{bmatrix} 14 & 11 & -5\\ 11 & 4 & -3\\ -5 & -3 & -1 \end{bmatrix}[/Tex]

Arrr-1 = (adj A)/|A|

[Tex]-1/13\begin{bmatrix} 14 & 11 & -5\\ 11 & 4 & -3\\ -5 & -3 & -1 \end{bmatrix}[/Tex]

[Tex]1/13\begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix}[/Tex]

(i). |adj A| = 14(-4 – 9) – 11(-11 – 15) – 5(-33 + 20)

= 14(-13) – 11(-26) – 5(-13)

= -182 + 286 + 65 = 169

adj(adj A) = [Tex]\begin{bmatrix} -13 & 26 & -13\\ 26 & -39 & -13\\ -13 & -13 & -65 \end{bmatrix}[/Tex]

[adj A]-1 = (adj(adj A))/|adj A|

[Tex]1/169\begin{bmatrix} -13 & 26 & -13\\ 26 & -39 & -13\\ -13 & -13 & -65 \end{bmatrix}[/Tex]

[Tex]1/13\begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}[/Tex]

Now, A-1[Tex]1/13\begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} \frac{-14}{13} & \frac{-11}{13} & \frac{5}{13}\\ \frac{-11}{13} & \frac{-4}{13} & \frac{3}{13}\\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{bmatrix}[/Tex]

adj(A-1) = [Tex]\begin{bmatrix} \frac{-4}{169}-\frac{9}{169} & -(\frac{-11}{169}-\frac{15}{169}) & \frac{-33}{169}+\frac{20}{169}\\ -(\frac{-11}{169}-\frac{-15}{169}) & \frac{-14}{169}-\frac{25}{169} &-(\frac{-42}{169}+\frac{55}{169}) \\ \frac{-33}{169}+\frac{20}{169} & -(\frac{-42}{169}+\frac{55}{169}) & \frac{56}{169}-\frac{121}{169} \end{bmatrix}[/Tex]

[Tex]1/169\begin{bmatrix} -13 & 26 & -13\\ 26 & -39 & -13\\ -13 & -13 & -65 \end{bmatrix}[/Tex]

[Tex]1/13\begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}[/Tex]

Hence, [adj A]-1 = adj(A-1)

(ii). A-1[Tex]1/13\begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix}[/Tex]

adj A-1[Tex]1/13\begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}[/Tex]

|A-1| = (1/13)3[-14 × (-13) +11 × (-26) + 5 × (-13)]

= (1/13)3 × (-169)

= -1/13

Now, (A-1)-1 = (adj A-1)/|A-1|

[Tex]\frac{1}{(\frac{-1}{13})}*\frac{1}{13}\begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} 1 & -2 & 1\\ -2 & 3 & 1\\ 1 & 1 & 5 \end{bmatrix}[/Tex]

= A

Hence, it is proved that (A-1)-1 = A

Question 5. Evaluate [Tex]\begin{vmatrix} x & y & x+y\\ y & x+y & x\\ x+y & x &y \end{vmatrix}[/Tex]

Solution: 

A = [Tex]\begin{vmatrix} x & y & x+y\\ y & x+y & x\\ x+y & x &y \end{vmatrix}[/Tex]

Applying R1 -> R1+R2+R3

A = [Tex]\begin{vmatrix} 2(x+y) & 2(x+y) & 2(x+y)\\ y & x+y & x\\ x+y & x &y \end{vmatrix}[/Tex]

= 2(x+y)[Tex]\begin{vmatrix} 1 & 1 & 1\\ y & x+y & x\\ x+y & x &y \end{vmatrix}[/Tex]

Applying C2-> C2 – C1 and C3-> C3 – C1

A = 2(x + y)[Tex]\begin{vmatrix} 1 & 0 & 0\\ y & x & x-y\\ x+y & -y &-x \end{vmatrix}[/Tex]

Expanding along R1

A = 2(x + y)[-x2 + y(x – y)]

= -2(x + y)(x2 + y2 – yx)

A = -2(x3 + y3)

Question 6. Evaluate [Tex]\begin{vmatrix} 1 & x & y\\ 1 & x+y & y\\ 1 & x &x+y \end{vmatrix}[/Tex]

Solution:

A = [Tex]\begin{vmatrix} 1 & x & y\\ 1 & x+y & y\\ 1 & x &x+y \end{vmatrix}[/Tex]

Applying R2->R2 – R1 and R3->R3 – R1

A = [Tex]\begin{vmatrix} 1 & x & y\\ 0 & y & 0\\ 0 & 0 &x \end{vmatrix}[/Tex]

Expanding along C1

A = 1(xy – 0)

A = xy

Question 7. Solve the system of the following questions:

2/x + 3/y + 10/z = 4

4/x – 6/y + 5/z = 1

6/x + 9/y – 20/z = 2

Solution:

Assume 1/x = p ; 1/y = q; 1/z = r

then. the above equations will be like

2p + 3Q + 10r = 4

4p – 6q + 5r = 1

6p + 9q – 20r = 2

This can be written in the form of AX=B

where,

A = [Tex]\begin{bmatrix} 2 & 3 & 10\\ 4 & -6 & 5\\ 6 & 9 & -20 \end{bmatrix}[/Tex]

X = [Tex]\begin{bmatrix} p\\ q\\ r \end{bmatrix}[/Tex]

B = [Tex]\begin{bmatrix} 4\\ 1\\ 2 \end{bmatrix}[/Tex]

We have,

|A| = 2(120 – 45) – 3(-80 – 30) + 10(36 + 36)

|A| = 150 + 330 + 720

|A| = 1200 ≠ 0

Hence A is invertible matrix.

A11 = 75

A12 = 110

A13 = 72

A21 = 150

A22 = -100

A23 = 0

A31 = 75

A32 = 30

A33 = -24

A-1 = (adj A)/|A|

A-1[Tex]\frac{1}{1200}\begin{bmatrix} 75 & 150 & 75\\ 110 & -100 & 30\\ 72 & 0 & -24 \end{bmatrix}[/Tex]

Now,

X = A-1B

[Tex]\begin{bmatrix} p\\ q\\ r \end{bmatrix}   [/Tex][Tex]\frac{1}{1200}\begin{bmatrix} 75 & 150 & 75\\ 110 & -100 & 30\\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4\\ 1\\ 2 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} p\\ q\\ r \end{bmatrix}   [/Tex][Tex]\frac{1}{1200}\begin{bmatrix} 300+150+150\\ 440-100+60\\ 288+0-48 \end{bmatrix}[/Tex]

[Tex]\frac{1}{1200}\begin{bmatrix} 600\\ 400\\ 240 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} \frac{1}{2}\\ \frac{1}{3}\\ \frac{1}{5} \end{bmatrix}[/Tex]

From above p = 1/2; q = 1/3 ; r = 1/5

So, x = 2; y = 3; z = 5

Question 8. Choose the correct answer.

If x, y, z are non-zero real numbers, then the inverse of matrix A = [Tex]\begin{bmatrix} x & 0 & 0\\ 0 & y &0 \\ 0 & 0 & z \end{bmatrix}   [/Tex] is 

(A) [Tex]\begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} &0 \\ 0 & 0 & z^{-1} \end{bmatrix}[/Tex]

(B) xyz[Tex]\begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} &0 \\ 0 & 0 & z^{-1} \end{bmatrix}[/Tex]

(C) [Tex]\frac{1}{xyz}\begin{bmatrix} x & 0 & 0\\ 0 & y &0 \\ 0 & 0 & z \end{bmatrix}[/Tex]

(D) [Tex]\frac{1}{xyz}\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}[/Tex]

Solution:

A = [Tex]\begin{bmatrix} x & 0 & 0\\ 0 & y &0 \\ 0 & 0 & z \end{bmatrix}[/Tex]

|A| = x(yz – 0) = xyz ≠ 0

Hence, the matrix is invertible

Now,

A11 = yz

A12 = 0

A13 = 0

A21 = 0

A22 = xz

A23 = 0

A31 = 0

A32 = 0

A33 = xy

adj A = [Tex]\begin{bmatrix} yz & 0 & 0\\ 0 & xz &0 \\ 0 & 0 & xy \end{bmatrix}[/Tex]

A-1 = (adj A)/|A|

A-1[Tex]\frac{1}{xyz}\begin{bmatrix} yz & 0 & 0\\ 0 & xz &0 \\ 0 & 0 & xy \end{bmatrix}[/Tex]

A-1 [Tex]\begin{bmatrix} \frac{yz}{xyz} & 0 & 0\\ 0 & \frac{xz}{xyz} &0 \\ 0 & 0 & \frac{xy}{xyz} \end{bmatrix}[/Tex]

A-1[Tex]\begin{bmatrix} \frac{1}{x} & 0 & 0\\ 0 & \frac{1}{y} &0 \\ 0 & 0 & \frac{1}{z} \end{bmatrix}[/Tex]

A-1 [Tex]\begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} &0 \\ 0 & 0 & z^{-1} \end{bmatrix}[/Tex]

Hence, the correct answer is A.

Question 9. Choose the correct answer

Let A = [Tex]\begin{bmatrix} 1 & sin\theta  & 1\\ -sin\theta & 1 & sin\theta\\ -1 & -sin\theta & 1 \end{bmatrix}   [/Tex], where 0 ≤ θ ≤ 2Ï€, then

(A) Det(A) = 0                                      (B) Det(A) ∈ (2, ∞)

(C) Det(A) ∈ (2, 4)                              (D) Det(A) ∈ [2, 4]

Solution:

A = [Tex]\begin{bmatrix} 1 & sin\theta  & 1\\ -sin\theta & 1 & sin\theta\\ -1 & -sin\theta & 1 \end{bmatrix}[/Tex]

|A| = 1(1 + sin2θ) – sinθ(-sinθ + sinθ) + 1(sin2θ + 1)

|A| = 1 + sin2θ + sin2θ + 1

= 2 + 2 sin2θ

= 2(1 + sin2θ)

Now 0 ≤ θ ≤ 2π

So, 0 ≤ sinθ ≤ 1

0 ≤ sin2θ ≤ 1

0 + 1 ≤ 1 + sin2θ ≤ 1 + 1

2 ≤ 2(1 + sin2θ) ≤ 4

Det(A) ∈ [2, 4]

Hence, the correct answer is D.



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads