Skip to content
Related Articles

Related Articles

Nambiar Number Generator
  • Last Updated : 05 Aug, 2019

M. Nambiar has devised a mechanism to process any given number and thus generating a new resultant number. He calls this mechanism as the “Nambiar Number Generator” and the resultant number is referred to as the “Nambiar Number”.

Mechanism: In the given number, starting with the first digit, keep on adding all subsequent digits till the state (even or odd) of the sum of the digits is opposite to the state (odd or even) of the first digit. Continue this form the subsequent digit till the last digit of the number is reached. Concatenating the sums thus generates the Nambiar Number.

Examples:

Input: N = 9880127431
Output: 26971

First digitNext valid consecutive digitsResultant number
9880127431988012743126
98801274319880127431269
988012743198801274312697
9880127431988012743126971

Input: N = 9866364552
Output: 32157



Approach: For the first unused digit from the left check whether it is even or odd. If the digit is even then find the sum of consecutive digits starting at the current digit which is odd (even sum if the first digit was odd). Concatenate this sum to the resultant number and repeat the whole process starting from the first unused digit from the left.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the Nambiar
// number of the given number
string numbiarNumber(string str, int i)
{
    // If there is no digit to choose
    if (i > str.length())
        return "";
  
    // Choose the first digit
    int firstDigit = str[i] - '0';
  
    // Chosen digit's parity
    int digitParity = firstDigit % 2;
  
    // To store the sum of the consecutive
    // digits starting from the chosen digit
    int sumDigits = 0;
  
    // While there are digits to choose
    while (i < str.length())
    {
        // Update the sum
        sumDigits += (str[i] - '0');
        int sumParity = sumDigits % 2;
  
        // If the parity differs
        if (digitParity != sumParity)
            break;
        i++;
    }
  
    // Return the current sum concatenated with the
    // Numbiar number for the rest of the string
    return (to_string(sumDigits) + 
            numbiarNumber(str, i + 1));
}
  
// Driver code
int main()
{
    string str = "9880127431";
    cout << numbiarNumber(str, 0) << endl;
    return 0;
}
  
// This code is contributed by
// sanjeev2552

Java




// Java implementation of the approach
class GFG {
  
    // Function to return the Nambiar
    // number of the given number
    static String nambiarNumber(String str, int i)
    {
  
        // If there is no digit to choose
        if (i >= str.length())
            return "";
  
        // Choose the first digit
        int firstDigit = (str.charAt(i) - '0');
  
        // Chosen digit's parity
        int digitParity = firstDigit % 2;
  
        // To store the sum of the consecutive
        // digits starting from the chosen digit
        int sumDigits = 0;
  
        // While there are digits to choose
        while (i < str.length()) {
  
            // Update the sum
            sumDigits += (str.charAt(i) - '0');
            int sumParity = sumDigits % 2;
  
            // If the parity differs
            if (digitParity != sumParity) {
                break;
            }
            i++;
        }
  
        // Return the current sum concatenated with the
        // Numbiar number for the rest of the string
        return ("" + sumDigits + nambiarNumber(str, i + 1));
    }
  
    // Driver code
    public static void main(String[] args)
    {
        String str = "9880127431";
        System.out.println(nambiarNumber(str, 0));
    }
}

Python3




# Java implementation of the approach
  
# Function to return the Nambiar
# number of the given number
def nambiarNumber(Str,i):
  
    # If there is no digit to choose
    if (i >= len(Str)):
        return ""
  
    # Choose the first digit
    firstDigit =ord(Str[i])-ord('0')
  
    # Chosen digit's parity
    digitParity = firstDigit % 2
  
    # To store the sum of the consecutive
    # digits starting from the chosen digit
    sumDigits = 0
  
    # While there are digits to choose
    while (i < len(Str)):
  
        # Update the sum
        sumDigits += (ord(Str[i]) - ord('0'))
        sumParity = sumDigits % 2
  
        # If the parity differs
        if (digitParity != sumParity):
            break
        i += 1
  
    # Return the current sum concatenated with the
    # Numbiar number for the rest of the String
    return ("" + str(sumDigits) +
                 nambiarNumber(Str, i + 1))
  
# Driver code
Str = "9880127431"
print(nambiarNumber(Str, 0))
  
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach.
using System;
using System.Collections.Generic; 
      
class GFG 
{
  
    // Function to return the Nambiar
    // number of the given number
    static String nambiarNumber(String str, int i)
    {
  
        // If there is no digit to choose
        if (i >= str.Length)
            return "";
  
        // Choose the first digit
        int firstDigit = (str[i] - '0');
  
        // Chosen digit's parity
        int digitParity = firstDigit % 2;
  
        // To store the sum of the consecutive
        // digits starting from the chosen digit
        int sumDigits = 0;
  
        // While there are digits to choose
        while (i < str.Length) 
        {
  
            // Update the sum
            sumDigits += (str[i] - '0');
            int sumParity = sumDigits % 2;
  
            // If the parity differs
            if (digitParity != sumParity) 
            {
                break;
            }
            i++;
        }
  
        // Return the current sum concatenated with the
        // Numbiar number for the rest of the string
        return ("" + sumDigits + nambiarNumber(str, i + 1));
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        String str = "9880127431";
        Console.WriteLine(nambiarNumber(str, 0));
    }
}
  
// This code is contributed by Rajput-Ji
Output:
26971

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :