Minimum XOR of OR and AND of any pair in the Array

Given an array arr[] of N positive integers the task is to find the minimum value of Bitwise XOR of Bitwise OR and AND of any pair in the given array.

Examples:

Input: arr[] = {1, 2, 3, 4, 5}
Output: 1
Explanation:
For element 2 & 3:
The value of the expression (2&3) xor (2|3) is 1, which is the minimum from all the pairs in the given array.

Input : arr[] = {3, 6, 8, 4, 5}
Output : 1
Explanation:
For element 4 & 5:
The value of the expression (4&5) xor (4|5) is 1, which is the minimum from all the pairs in the given array.

Approach: For any pairs of elements say X and Y, the value of the expression (X&Y) xor (X|Y) can be written as:



=> (X.Y)^(X+Y)
=> (X.Y)(X+Y)’ + (X.Y)'(X+Y)
=> (X.Y)(X’.Y’) + (X’+Y’)(X+Y)
=> X.X’.Y.Y’ + X’.X + X’.Y + Y’.X + Y’.Y
=> 0 + 0 + X’.Y + Y’.X + 0
=> X^Y

From the above calculations, for any pairs (X, Y) in the given array, the expression (X&Y) xor (X|Y) is reduced to X xor Y. Therefore, the minimum value of Bitwise XOR of Bitwise OR and AND of any pair in the given array is given XOR of minimum value pair which can be calculated using the approach discussed in this article.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <algorithm>
#include <climits>
#include <iostream>
using namespace std;
  
// Function to find the minimum
// value of XOR of AND and OR of
// any pair in the given array
int maxAndXor(int arr[], int n)
{
    int ans = INT_MAX;
  
    // Sort the array
    sort(arr, arr + n);
  
    // Traverse the array arr[]
    for (int i = 0; i < n - 1; i++) {
  
        // Compare and Find the minimum
        // XOR value of an array.
        ans = min(ans,
                  arr[i] ^ arr[i + 1]);
    }
  
    // Return the final answer
    return ans;
}
  
// Driver Code
int main()
{
    // Given array
    int arr[N] = { 1, 2, 3, 4, 5 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    cout << maxAndXor(arr, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to for above approach
import java.io.*; 
import java.util.Arrays;
class GFG{ 
  
// Function to find the minimum
// value of XOR of AND and OR of
// any pair in the given array
static int maxAndXor(int arr[], int n)
{
    int ans = 9999999;
  
    // Sort the array
    Arrays.sort(arr);
  
    // Traverse the array arr[]
    for (int i = 0; i < n - 1; i++) 
    {
  
        // Compare and Find the minimum
        // XOR value of an array.
        ans = Math.min(ans,
              arr[i] ^ arr[i + 1]);
    }
  
    // Return the final answer
    return ans;
}
      
// Driver Code 
public static void main (String[] args) 
    // Given array arr[]
    int arr[] = new int[]{ 1, 2, 3, 4, 5 };
  
    int N = arr.length;
  
    // Function Call
    System.out.println(maxAndXor(arr, N));
  
// This code is contributed by Shubham Prakash

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function to find the minimum
# value of XOR of AND and OR of
# any pair in the given array
def maxAndXor(arr, n):
  
    ans = float('inf')
  
    # Sort the array
    arr.sort()
  
    # Traverse the array arr[]
    for i in range(n - 1):
  
        # Compare and Find the minimum
        # XOR value of an array.
        ans = min(ans, arr[i] ^ arr[i + 1])
  
    # Return the final answer
    return ans
  
# Driver Code
if __name__ == '__main__':
  
    # Given array
    arr = [ 1, 2, 3, 4, 5 ]
    N = len(arr)
  
    # Function Call
    print(maxAndXor(arr, N))
  
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to for above approach
using System;
class GFG{ 
  
// Function to find the minimum
// value of XOR of AND and OR of
// any pair in the given array
static int maxAndXor(int []arr, int n)
{
    int ans = 9999999;
  
    // Sort the array
    Array.Sort(arr);
  
    // Traverse the array arr[]
    for (int i = 0; i < n - 1; i++) 
    {
  
        // Compare and Find the minimum
        // XOR value of an array.
        ans = Math.Min(ans,
            arr[i] ^ arr[i + 1]);
    }
  
    // Return the final answer
    return ans;
}
      
// Driver Code 
public static void Main() 
    // Given array arr[]
    int []arr = new int[]{ 1, 2, 3, 4, 5 };
  
    int N = arr.Length;
  
    // Function Call
    Console.Write(maxAndXor(arr, N));
  
// This code is contributed by Code_Mech

chevron_right


Output:

1

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.