 GeeksforGeeks App
Open App Browser
Continue

# Minimum shifts of substrings of 1s required to group all 1s together in a given Binary string

Given a binary string S of length N, the task is to print the minimum number of indices, substrings consisting only of 1s are required to be shifted such that all 1s present in the string are grouped together.

Examples:

Input: S = “00110111011”
Output: 2
Explanation:
Operation 1: Shift substring {S, S} (0-based indexing) to right and place between S and S. Now, S is modified to “00011111011”.
Operation 2: Shift substring {S, S} to left and place between S and S. Now, S is modified to “00011111110”.
Therefore, 2 substrings are required to be shifted.

Input: S = “1001001”
Output: 4
Explanation:
Operation 1: Shift ‘1’ at S to right by two indices and place between S and S. Now, S is modified to “0011001”.
Operation 2: Shift ‘1’ at S to left by two indices and place between S and S. Now, S is modified to “0011100”.
Therefore, 4 substrings are required to be shifted.

Approach: The problem can be solved by observing that the minimum number of operations required is equal to the number of 0s present between any pair of consecutive 1s. Follow the steps below to solve the problem:

1. Iterate over the characters of the string and search for the first and last occurrences of the character ‘1’ and store it in variable, say firstOne and lastOne respectively.
2. Traverse the range [firstOne, lastOne] and count the number of ‘0’s present in the substring {S[firstOne], .. , S[lastOne]} and print it as the required output.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to count indices substrings``// of 1s need to be shifted such that``// all 1s in the string are grouped together``void` `countShifts(string str)``{``    ``// Stores first occurrence of '1'``    ``int` `firstOne = -1;` `    ``// Stores last occurrence of '1'``    ``int` `lastOne = -1;` `    ``// Count of 0s between firstOne and lastOne``    ``int` `count = 0;` `    ``// Traverse the string to find the``    ``// first and last occurrences of '1'``    ``for` `(``int` `i = 0; i < str.length(); i++) {``        ``if` `(str[i] == ``'1'``) {` `            ``if` `(firstOne == -1)``                ``firstOne = i;` `            ``lastOne = i;``        ``}``    ``}` `    ``if` `((firstOne == -1) || (firstOne == lastOne)) {``        ``cout << 0;``        ``return``;``    ``}` `    ``// Count number of 0s present between``    ``// firstOne and lastOne``    ``for` `(``int` `i = firstOne; i <= lastOne; i++) {` `        ``if` `(str[i] == ``'0'``) {` `            ``count++;``        ``}``    ``}` `    ``// Print minimum operations``    ``cout << count << endl;``}` `// Driver Code``int` `main()``{` `    ``// Given string``    ``string str = ``"00110111011"``;` `    ``countShifts(str);``    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;``import` `java.util.*;` `class` `GFG{``     ` `// Function to count indices substrings``// of 1s need to be shifted such that``// all 1s in the string are grouped together``static` `void` `countShifts(String str)``{``    ` `    ``// Stores first occurrence of '1'``    ``int` `firstOne = -``1``;``   ` `    ``// Stores last occurrence of '1'``    ``int` `lastOne = -``1``;``   ` `    ``// Count of 0s between firstOne and lastOne``    ``int` `count = ``0``;``    ` `    ``// Traverse the string to find the``    ``// first and last occurrences of '1'``    ``for``(``int` `i = ``0``; i < str.length(); i++)``    ``{``        ``if` `(str.charAt(i) == ``'1'``)``        ``{``            ``if` `(firstOne == -``1``)``                ``firstOne = i;``   ` `            ``lastOne = i;``        ``}``    ``}``   ` `    ``if` `((firstOne == -``1``) || (firstOne == lastOne))``    ``{``        ``System.out.print(``0``);``        ``return``;``    ``}``   ` `    ``// Count number of 0s present between``    ``// firstOne and lastOne``    ``for``(``int` `i = firstOne; i <= lastOne; i++)``    ``{``        ``if` `(str.charAt(i) == ``'0'``)``        ``{      ``            ``count++;``        ``}``    ``}``   ` `    ``// Print minimum operations``    ``System.out.println(count);``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ` `    ``// Given string``    ``String str = ``"00110111011"``;``   ` `    ``countShifts(str); ``}``}` `// This code is contributed by code_hunt`

## Python3

 `# Python3 program for the above approach`` ` `# Function to count indices substrings``# of 1s need to be shifted such that``# all 1s in the string are grouped``# together``def` `countShifts(``str``):``    ` `    ``# Stores first occurrence of '1'``    ``firstOne ``=` `-``1`` ` `    ``# Stores last occurrence of '1'``    ``lastOne ``=` `-``1`` ` `    ``# Count of 0s between firstOne``    ``# and lastOne``    ``count ``=` `0`` ` `    ``# Traverse the string to find the``    ``# first and last occurrences of '1'``    ``for` `i ``in` `range``(``len``(``str``)):``        ``if` `(``str``[i] ``=``=` `'1'``):`` ` `            ``if` `(firstOne ``=``=` `-``1``):``                ``firstOne ``=` `i`` ` `            ``lastOne ``=` `i``            ` `    ``if` `((firstOne ``=``=` `-``1``) ``or``        ``(firstOne ``=``=` `lastOne)):``        ``print``(``0``)``        ``return``    ` `    ``# Count number of 0s present between``    ``# firstOne and lastOne``    ``for` `i ``in` `range``(firstOne, lastOne ``+` `1``, ``1``):``        ``if` `(``str``[i] ``=``=` `'0'``):``            ``count ``+``=` `1``            ` `    ``# Print minimum operations``    ``print``(count)` `# Driver Code` `# Given string``str` `=` `"00110111011"` `countShifts(``str``)` `# This code is contributed by sanjoy_62`

## C#

 `// C# program for the above approach``using` `System;``using` `System.Collections.Generic;``class` `GFG``{``    ` `    ``// Function to count indices substrings``    ``// of 1s need to be shifted such that``    ``// all 1s in the string are grouped together``    ``static` `void` `countShifts(``string` `str)``    ``{``        ``// Stores first occurrence of '1'``        ``int` `firstOne = -1;``      ` `        ``// Stores last occurrence of '1'``        ``int` `lastOne = -1;``      ` `        ``// Count of 0s between firstOne and lastOne``        ``int` `count = 0;``      ` `        ``// Traverse the string to find the``        ``// first and last occurrences of '1'``        ``for` `(``int` `i = 0; i < str.Length; i++)``        ``{``            ``if` `(str[i] == ``'1'``)``            ``{``      ` `                ``if` `(firstOne == -1)``                    ``firstOne = i;``      ` `                ``lastOne = i;``            ``}``        ``}``      ` `        ``if` `((firstOne == -1) || (firstOne == lastOne))``        ``{``            ``Console.Write(0);``            ``return``;``        ``}``      ` `        ``// Count number of 0s present between``        ``// firstOne and lastOne``        ``for` `(``int` `i = firstOne; i <= lastOne; i++)``        ``{``      ` `            ``if` `(str[i] == ``'0'``)``            ``{      ``                ``count++;``            ``}``        ``}``      ` `        ``// Print minimum operations``        ``Console.WriteLine(count);``    ``}` `  ``// Driver code``  ``static` `void` `Main()``  ``{``    ` `        ``// Given string``        ``string` `str = ``"00110111011"``;``      ` `        ``countShifts(str); ``  ``}``}` `// This code is contributed by divyeshrabadiya07`

## Javascript

 ``

Output:

`2`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up