Minimum operations required to make all the array elements equal

Given an array arr[] of n integer and an integer k. The task is to count the minimum number of times the given operation is required to make all the array elements equal. In a single operation, the kth element of the array is appended at the end of the array and the first element of the array gets deleted (the size of the array remains same). If the array elements cannot be made equal with this operation then print -1 else print the count of minimum operations required.

Examples:

Input: arr[] = {2, 1, 1, 1, 1}, k = 3
Output: 1
Applying the operation 1st time
3rd element in the array is 1 we append it to the end of the array and get arr[] = {2, 1, 1, 1, 1, 1}
then we delete the 1st element and get arr[] = {1, 1, 1, 1, 1}

Input: arr[] = {1, 2, 3, 4}, k = 3
Output: -1

Approach: At each operation at first the kth element is copied to the end then the (k + 1)th element from the initial sequence is copied, then (k + 2)th and so on. So all the elements will become equal if and only if all the elements in the array starting from the kth element are equal. It’s now also obvious that the number of operations needed for it is equal to the index of the last number that is not equal to the nth element of the initial sequence

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach 
#include<bits/stdc++.h>
  
using namespace std;
  
    // Function to return the minimum number of 
    // given operation required to make all the 
    // array elements equal 
    void minOperation(int n, int k, int a[]) 
    
          
        // Check if all the elements 
        // from kth index to last are equal 
        for (int i = k; i < n; i++) 
        
            if(a[i] != a[k - 1]) 
                cout << (-1)<<endl; 
        
          
        // Finding the 1st element which is 
        // not equal to the kth element 
        for (int i = k - 2; i > -1; i--) 
        
            if(a[i] != a[k - 1]) 
                cout << (i + 1) << endl; 
        
    
  
    // Driver code 
    int main () 
    {
        int n = 5; 
        int k = 3; 
        int a[] = {2, 1, 1, 1, 1}; 
          
        minOperation(n, k, a); 
    }
  
// This code is contributed by
// Surendra_Gangwar

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
import java.io.*;
  
class GFG 
{
          
    // Function to return the minimum number of 
    // given operation required to make all the 
    // array elements equal 
    static void minOperation(int n, int k, int a[]) 
    
          
        // Check if all the elements 
        // from kth index to last are equal 
        for (int i = k; i < n; i++) 
        
            if(a[i] != a[k - 1]) 
                System.out.println(-1); 
        
          
        // Finding the 1st element which is 
        // not equal to the kth element 
        for (int i = k - 2; i > -1; i--) 
        
            if(a[i] != a[k - 1]) 
                System.out.println(i + 1); 
        
    
  
    // Driver code 
    public static void main (String[] args) 
    {
      
        int n = 5
        int k = 3
        int a[] = {2, 1, 1, 1, 1}; 
          
        minOperation(n, k, a); 
    }
}
  
// This code is contributed by ajit.

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return the minimum number of given operation
# required to make all the array elements equal
def minOperation(n, k, a):
      
    # Check if all the elements 
    # from kth index to last are equal
    for i in range(k, n):
        if(a[i] != a[k - 1]):
            return -1
              
    # Finding the 1st element 
    # which is not equal to the kth element
    for i in range(k-2, -1, -1):
        if(a[i] != a[k-1]):
            return i + 1
              
# Driver code
n = 5
k = 3
a = [2, 1, 1, 1, 1]
print(minOperation(n, k, a))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
  
class GFG
{
      
    // Function to return the minimum number of 
    // given operation required to make all the 
    // array elements equal 
    static void minOperation(int n, int k, int []a) 
    
          
        // Check if all the elements 
        // from kth index to last are equal 
        for (int i = k; i < n; i++) 
        
            if(a[i] != a[k - 1]) 
                Console.WriteLine(-1); 
              
        
          
        // Finding the 1st element which is 
        // not equal to the kth element 
        for (int i = k - 2; i > -1; i--) 
        
            if(a[i] != a[k - 1]) 
                Console.WriteLine(i + 1); 
        
    
  
    // Driver code 
    static public void Main ()
    {
        int n = 5; 
        int k = 3; 
        int []a = {2, 1, 1, 1, 1}; 
          
        minOperation(n, k, a); 
    }
}
  
// This code is contributed by Ryuga

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Php implementation of the approach
  
// Function to return the minimum number of 
// given operation required to make all the
// array elements equal
function minOperation($n, $k, &$a)
{
      
    // Check if all the elements 
    // from kth index to last are equal
    for ($i = $k; $i < $n; $i++)
    {
        if($a[$i] != $a[$k - 1])
            return -1;
    }
      
    // Finding the 1st element which is 
    // not equal to the kth element
    for ($i = $k - 2; $i > -1; $i--)
    {
        if($a[$i] != $a[$k - 1])
            return ($i + 1);
    }
}
  
// Driver code
$n = 5;
$k = 3;
$a = array(2, 1, 1, 1, 1);
echo(minOperation($n, $k, $a));
  
// This code is contributed
// by Shivi_Aggarwal
?>

chevron_right


Output:

1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.