Minimum number of bracket reversals needed to make an expression balanced | Set – 2

Given an expression with only ‘}’ and ‘{‘. The expression may not be balanced. The task is to find minimum number of bracket reversals to make the expression balanced.

Examples:

Input : exp = "}{"
Output : 2
We need to change '}' to '{' and '{' to
'}' so that the expression becomes balanced, 
the balanced expression is '{}'

Input : exp = "}{{}}{{{"
Output : 3
The balanced expression is "{{{}}{}}"

The solution discussed in previous post requires O(n) extra space. The problem can be solved using constant space.



The idea is to use two variables open and close where, open represents number of unbalanced opening brackets and close represents number of unbalanced close brackets.

Traverse the string and if current character is an opening bracket increment open. If current character is a closing bracket then check if there are unbalanced opening brackets(open > 0). If yes then decrement open else increment close as this bracket is unbalanced.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find minimum number of
// reversals required to balance an expression
#include <bits/stdc++.h>
using namespace std;
  
// Returns count of minimum reversals for making
// expr balanced. Returns -1 if expr cannot be
// balanced.
int countMinReversals(string expr)
{
    int len = expr.length();
  
    // length of expression must be even to make
    // it balanced by using reversals.
    if (len % 2)
        return -1;
  
    // To store number of reversals required.
    int ans = 0;
  
    int i;
  
    // To store number of unbalanced opening brackets.
    int open = 0;
  
    // To store number of unbalanced closing brackets.
    int close = 0;
  
    for (i = 0; i < len; i++) {
  
        // If current bracket is open then increment
        // open count.
        if (expr[i] == '{')
            open++;
  
        // If current bracket is close, check if it
        // balances opening bracket. If yes then
        // decrement count of unbalanced opening
        // bracket else increment count of
        // closing bracket.
        else {
            if (!open)
                close++;
            else
                open--;
        }
    }
  
    ans = (close / 2) + (open / 2);
  
    // For the case: "}{" or when one closing and
    // one opening bracket remains for pairing, then
    // both need to be reversed.
    close %= 2;
    open %= 2;
    if (close)
        ans += 2;
  
    return ans;
}
  
// Driver Code
int main()
{
    string expr = "}}{{";
  
    cout << countMinReversals(expr);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find minimum number of 
// reversals required to balance an expression 
class GFG
{
  
// Returns count of minimum reversals for making 
// expr balanced. Returns -1 if expr cannot be 
// balanced. 
static int countMinReversals(String expr) 
    int len = expr.length(); 
  
    // length of expression must be even to make 
    // it balanced by using reversals. 
    if (len % 2 != 0
        return -1
  
    // To store number of reversals required. 
    int ans = 0
  
    int i; 
  
    // To store number of unbalanced opening brackets. 
    int open = 0
  
    // To store number of unbalanced closing brackets. 
    int close = 0
  
    for (i = 0; i < len; i++)
    
  
        // If current bracket is open then increment 
        // open count. 
        if (expr.charAt(i) == '{'
            open++; 
  
        // If current bracket is close, check if it 
        // balances opening bracket. If yes then 
        // decrement count of unbalanced opening 
        // bracket else increment count of 
        // closing bracket. 
        else 
        
            if (open == 0
                close++; 
            else
                open--; 
        
    
  
    ans = (close / 2) + (open / 2); 
  
    // For the case: "}{" or when one closing and 
    // one opening bracket remains for pairing, then 
    // both need to be reversed. 
    close %= 2
    open %= 2
    if (close != 0
        ans += 2
  
    return ans; 
  
// Driver Code 
public static void main(String args[])
    String expr = "}}{{"
  
    System.out.println(countMinReversals(expr)); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find minimum number of
# reversals required to balance an expression
  
# Returns count of minimum reversals for 
# making expr balanced. Returns -1 if 
# expr cannot be balanced.
def countMinReversals(expr):
  
    length = len(expr)
  
    # length of expression must be even to 
    # make it balanced by using reversals.
    if length % 2:
        return -1
  
    # To store number of reversals required.
    ans = 0
  
    # To store number of unbalanced
    # opening brackets.
    open = 0
  
    # To store number of unbalanced 
    # closing brackets.
    close = 0
  
    for i in range(0, length): 
  
        # If current bracket is open 
        # then increment open count.
        if expr[i] == "":
            open += 1
  
        # If current bracket is close, check if it
        # balances opening bracket. If yes then
        # decrement count of unbalanced opening
        # bracket else increment count of
        # closing bracket.
        else:
            if not open:
                close += 1
            else:
                open -= 1
          
    ans = (close // 2) + (open // 2)
  
    # For the case: "" or when one closing 
    # and one opening bracket remains for 
    # pairing, then both need to be reversed.
    close %= 2
    open %= 2
      
    if close > 0:
        ans += 2
  
    return ans
  
# Driver Code
if __name__ == "__main__":
  
    expr = "}}{{"
    print(countMinReversals(expr))
  
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find minimum number of 
// reversals required to balance an expression 
using System;
      
class GFG
{
  
// Returns count of minimum reversals for making 
// expr balanced. Returns -1 if expr cannot be 
// balanced. 
static int countMinReversals(String expr) 
    int len = expr.Length; 
  
    // length of expression must be even to make 
    // it balanced by using reversals. 
    if (len % 2 != 0) 
        return -1; 
  
    // To store number of reversals required. 
    int ans = 0; 
  
    int i; 
  
    // To store number of unbalanced opening brackets. 
    int open = 0; 
  
    // To store number of unbalanced closing brackets. 
    int close = 0; 
  
    for (i = 0; i < len; i++)
    
  
        // If current bracket is open then increment 
        // open count. 
        if (expr[i] == '{'
            open++; 
  
        // If current bracket is close, check if it 
        // balances opening bracket. If yes then 
        // decrement count of unbalanced opening 
        // bracket else increment count of 
        // closing bracket. 
        else
        
            if (open == 0) 
                close++; 
            else
                open--; 
        
    
  
    ans = (close / 2) + (open / 2); 
  
    // For the case: "}{" or when one closing and 
    // one opening bracket remains for pairing, then 
    // both need to be reversed. 
    close %= 2; 
    open %= 2; 
    if (close != 0) 
        ans += 2; 
  
    return ans; 
  
// Driver Code 
public static void Main(String []args)
    String expr = "}}{{"
  
    Console.WriteLine(countMinReversals(expr)); 
}
  
// This code contributed by Rajput-Ji

chevron_right


Output:

2

Time Complexity: O(N), where N is the length of the string.
Auxiliary Space: O(1)



My Personal Notes arrow_drop_up

A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.