Number of closing brackets needed to complete a regular bracket sequence

Given an incomplete bracket sequence S. The task is to find the number of closing brackets ‘)’ needed to make it a regular bracket sequence and print the complete bracket sequence. You are allowed to add the brackets only at the end of the given bracket sequence. If it is not possible to complete the bracket sequence, print “IMPOSSIBLE”.

Let us define a regular bracket sequence in the following way:

  • Empty string is a regular bracket sequence.
  • If s is a regular bracket sequence, then (s) is a regular bracket sequence.
  • If s & t are regular bracket sequences, then st is a regular bracket sequence.

Examples:

Input : str = “(()(()(”
Output : (()(()()))
Explanation : The minimum number of ) needed to make the sequence regular are 3 which are appended at the end.

Input : str = “())(()”
Output : IMPOSSIBLE



We need to add minimal number of closing brackets ‘)’, so we will count the number of unbalanced opening brackets and then we will add that amount of closing brackets. If at any point the number of the closing bracket is greater than the opening bracket then the answer is IMPOSSIBLE.

Below is the implementation of the above approach:

Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find number of closing
// brackets needed and complete a regular
// bracket sequence
class GFG {
  
    // Function to find number of closing
    // brackets and complete a regular
    // bracket sequence
    static void completeSequence(String s)
    {
        // Finding the length of sequence
        int n = s.length();
  
        int open = 0, close = 0;
  
        for (int i = 0; i < n; i++) {
  
            // Counting opening brackets
            if (s.charAt(i) == '(')
                open++;
            else
                // Counting closing brackets
                close++;
  
            // Checking if at any position the
            // number of closing bracket
            // is more then answer is impossible
            if (close > open) {
                System.out.print("IMPOSSIBLE");
                return;
            }
        }
  
        // If possible, print 's' and required closing
        // brackets.
        System.out.print(s);
        for (int i = 0; i < open - close; i++)
            System.out.print(")");          
    }
  
    // Driver code
    public static void main(String[] args)
    {
        String s = "(()(()(";
        completeSequence(s);
    }
}

chevron_right


Python 3

# Python 3 program to find number of
# closing brackets needed and complete
# a regular bracket sequence

# Function to find number of closing
# brackets and complete a regular
# bracket sequence
def completeSequence(s):

# Finding the length of sequence
n = len(s)

open = 0
close = 0

for i in range(n):

# Counting opening brackets
if (s[i] == ‘(‘):
open += 1
else:

# Counting closing brackets
close += 1

# Checking if at any position the
# number of closing bracket
# is more then answer is impossible
if (close > open):
print(“IMPOSSIBLE”)
return

# If possible, print ‘s’ and
# required closing brackets.
print(s, end = “”)
for i in range(open – close):
print(“)”, end = “”)

# Driver code
if __name__ == “__main__”:

s = “(()(()(”
completeSequence(s)

# This code is contributed by ita_c

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find number of closing 
// brackets needed and complete a 
// regular bracket sequence 
using System;
  
class GFG
{
// Function to find number of closing
// brackets and complete a regular
// bracket sequence
static void completeSequence(String s)
{
    // Finding the length of sequence
    int n = s.Length;
  
    int open = 0, close = 0;
  
    for (int i = 0; i < n; i++) 
    {
  
        // Counting opening brackets
        if (s[i] == '(')
            open++;
        else
            // Counting closing brackets
            close++;
  
        // Checking if at any position the
        // number of closing bracket
        // is more then answer is impossible
        if (close > open) 
        {
            Console.Write("IMPOSSIBLE");
            return;
        }
    }
  
    // If possible, print 's' and 
    // required closing brackets.
    Console.Write(s);
    for (int i = 0; i < open - close; i++)
        Console.Write(")");         
}
  
// Driver Code
static void Main()
{
    String s = "(()(()(";
    completeSequence(s);
}
}
  
// This code is contributed
// by ANKITRAI1

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find number of closing 
// brackets needed and complete a 
// regular bracket sequence 
  
// Function to find number of closing 
// brackets and complete a regular 
// bracket sequence 
function completeSequence($s
    // Finding the length of sequence 
    $n = strlen($s); 
    $open = 0;
    $close = 0; 
  
    for ($i = 0; $i < $n; $i++) 
    
  
        // Counting opening brackets 
        if ($s[$i] == '('
            $open++; 
        else
            // Counting closing brackets 
            $close++; 
  
        // Checking if at any position the 
        // number of closing bracket 
        // is more then answer is impossible 
        if ($close > $open
        
            echo ("IMPOSSIBLE"); 
            return
        
    
  
    // If possible, print 's' and 
    // required closing brackets. 
    echo ($s); 
    for ($i = 0; $i < $open - $close; $i++) 
        echo (")");     
  
// Driver Code 
$s = "(()(()("
completeSequence($s); 
  
// This code is contributed 
// by ajit 
?>

chevron_right


Output:

(()(()()))


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Ryuga, jit_t



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.