Open In App

Minimum moves to reach from i to j in a cyclic string

Last Updated : 09 Dec, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given a cyclic string str and two integers i and j, the task is to count the minimum number of steps required to move from str[i] to str[j]. A move is to reach any adjacent character in the string and the move is only counted if str[start] != start[end] where start is the starting index for the move and end is the ending (adjacent either on the left or on the right) index. Since, the given string is circular, str[0] and str[n – 1] are adjacent to each other. 

Examples:

Input: str = "SSNSS", i = 0, j = 3 
Output: 0 From left to right : S -> S -> N -> S From right to left : S -> S -> S 
Input: str = "geeksforgeeks", i = 0, j = 3 
Output: 2

Approach:

  • Starting from index i start moving in the right direction till index j and for every character visited, if the current character is not equal to the previous character then increment steps1 = steps1 + 1.
  • Similarly, starting from i start moving in the left direction till index 0 and for every character visited, if the current character is not equal to the previous character then increment steps2 = steps2 + 1. Once the index 0 is visited, start traversing from index n – 1 to j and increment step2 if str[0] != str[n – 1].
  • Print min(step1, step2) in the end.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of steps
// required to move from i to j
int getSteps(string str, int i, int j, int n)
{
    // Starting from i + 1
    int k = i + 1;
 
    // Count of steps
    int steps = 0;
 
    // Current character
    char ch = str[i];
    while (k <= j) {
 
        // If current character is different from previous
        if (str[k] != ch) {
 
            // Increment steps
            steps++;
 
            // Update current character
            ch = str[k];
        }
        k++;
    }
 
    // Return total steps
    return steps;
}
 
// Function to return the minimum number of steps
// required to reach j from i
int getMinSteps(string str, int i, int j, int n)
{
 
    // Swap the values so that i <= j
    if (j < i) {
        int temp = i;
        i = j;
        j = temp;
    }
 
    // Steps to go from i to j (left to right)
    int stepsToRight = getSteps(str, i, j, n);
 
    // While going from i to j (right to left)
    // First go from i to 0
    // then from (n - 1) to j
    int stepsToLeft = getSteps(str, 0, i, n)
                      + getSteps(str, j, n - 1, n);
 
    // If first and last character is different
    // then it'll add a step to stepsToLeft
    if (str[0] != str[n - 1])
        stepsToLeft++;
 
    // Return the minimum of two paths
    return min(stepsToLeft, stepsToRight);
}
 
// Driver code
int main()
{
    string str = "SSNSS";
    int n = str.length();
    int i = 0, j = 3;
    cout << getMinSteps(str, i, j, n);
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
    // Function to return the count of steps
    // required to move from i to j
    static int getSteps(String str, int i, int j, int n)
    {
        // Starting from i + 1
        int k = i + 1;
     
        // Count of steps
        int steps = 0;
     
        // Current character
        char ch = str.charAt(i);
        while (k <= j)
        {
     
            // If current character is different from previous
            if (str.charAt(k) != ch)
            {
     
                // Increment steps
                steps++;
     
                // Update current character
                ch = str.charAt(k);
            }
            k++;
        }
     
        // Return total steps
        return steps;
    }
     
    // Function to return the minimum number of steps
    // required to reach j from i
    static int getMinSteps(String str, int i, int j, int n)
    {
     
        // Swap the values so that i <= j
        if (j < i)
        {
            int temp = i;
            i = j;
            j = temp;
        }
     
        // Steps to go from i to j (left to right)
        int stepsToRight = getSteps(str, i, j, n);
     
        // While going from i to j (right to left)
        // First go from i to 0
        // then from (n - 1) to j
        int stepsToLeft = getSteps(str, 0, i, n)
                        + getSteps(str, j, n - 1, n);
     
        // If first and last character is different
        // then it'll add a step to stepsToLeft
        if (str.charAt(0) != str.charAt(n - 1))
            stepsToLeft++;
     
        // Return the minimum of two paths
        return Math.min(stepsToLeft, stepsToRight);
    }
     
    // Driver code
    public static void main(String []args)
    {
        String str = "SSNSS";
        int n = str.length();
        int i = 0, j = 3;
        System.out.println(getMinSteps(str, i, j, n));
    }
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of the approach
 
# Function to return the count of steps
# required to move from i to j
def getSteps( str,  i, j, n) :
 
    # Starting from i + 1
    k = i + 1
 
    # Count of steps
    steps = 0
 
    # Current character
    ch = str[i]
    while (k <= j):
 
        # If current character is different from previous
        if (str[k] != ch):
 
            # Increment steps
            steps = steps + 1
 
            # Update current character
            ch = str[k]
         
        k = k + 1
     
 
    # Return total steps
    return steps
 
 
# Function to return the minimum number of steps
# required to reach j from i
def getMinSteps( str, i, j, n):
 
 
    # Swap the values so that i <= j
    if (j < i):
        temp = i
        i = j
        j = temp
     
 
    # Steps to go from i to j (left to right)
    stepsToRight = getSteps(str, i, j, n)
 
    # While going from i to j (right to left)
    # First go from i to 0
    # then from (n - 1) to j
    stepsToLeft = getSteps(str, 0, i, n) + getSteps(str, j, n - 1, n)
 
    # If first and last character is different
    # then it'll add a step to stepsToLeft
    if (str[0] != str[n - 1]):
        stepsToLeft = stepsToLeft + 1
 
    # Return the minimum of two paths
    return min(stepsToLeft, stepsToRight)
 
     
# Driver code
 
str = "SSNSS"
n = len(str)
i = 0
j = 3
print(getMinSteps(str, i, j, n))
 
# This code is contributed by ihritik


C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to return the count of steps
    // required to move from i to j
    static int getSteps(string str, int i, int j, int n)
    {
        // Starting from i + 1
        int k = i + 1;
     
        // Count of steps
        int steps = 0;
     
        // Current character
        char ch = str[i];
        while (k <= j)
        {
     
            // If current character is different from previous
            if (str[k] != ch)
            {
     
                // Increment steps
                steps++;
     
                // Update current character
                ch = str[k];
            }
            k++;
        }
     
        // Return total steps
        return steps;
    }
     
    // Function to return the minimum number of steps
    // required to reach j from i
    static int getMinSteps(string str, int i, int j, int n)
    {
     
        // Swap the values so that i <= j
        if (j < i)
        {
            int temp = i;
            i = j;
            j = temp;
        }
     
        // Steps to go from i to j (left to right)
        int stepsToRight = getSteps(str, i, j, n);
     
        // While going from i to j (right to left)
        // First go from i to 0
        // then from (n - 1) to j
        int stepsToLeft = getSteps(str, 0, i, n)
                        + getSteps(str, j, n - 1, n);
     
        // If first and last character is different
        // then it'll add a step to stepsToLeft
        if (str[0] != str[n - 1])
            stepsToLeft++;
     
        // Return the minimum of two paths
        return Math.Min(stepsToLeft, stepsToRight);
    }
     
    // Driver code
    public static void Main()
    {
        string str = "SSNSS";
        int n = str.Length;
        int i = 0, j = 3;
        Console.WriteLine(getMinSteps(str, i, j, n));
    }
}
 
// This code is contributed by ihritik


PHP




<?php
// PHP implementation of the above approach
 
// Function to return the count of steps
// required to move from i to j
function getSteps($str, $i, $j, $n)
{
    // Starting from i + 1
    $k = $i + 1;
 
    // Count of steps
    $steps = 0;
 
    // Current character
    $ch = $str[$i];
    while ($k <= $j)
    {
 
        // If current character is different
        // from previous
        if ($str[$k] != $ch)
        {
 
            // Increment steps
            $steps++;
 
            // Update current character
            $ch = $str[$k];
        }
        $k++;
    }
 
    // Return total steps
    return $steps;
}
 
// Function to return the minimum number
// of steps required to reach j from i
function getMinSteps($str, $i, $j, $n)
{
 
    // Swap the values so that i <= j
    if ($j < $i)
    {
        $temp = $i;
        $i = $j;
        $j = $temp;
    }
 
    // Steps to go from i to j (left to right)
    $stepsToRight = getSteps($str, $i, $j, $n);
 
    // While going from i to j (right to left)
    // First go from i to 0 then
    // from (n - 1) to j
    $stepsToLeft = getSteps($str, 0, $i, $n) +
                   getSteps($str, $j, $n - 1, $n);
 
    // If first and last character is different
    // then it'll add a step to stepsToLeft
    if ($str[0] != $str[$n - 1])
        $stepsToLeft++;
 
    // Return the minimum of two paths
    return min($stepsToLeft, $stepsToRight);
}
 
// Driver code
$str = "SSNSS";
$n = strlen($str);
$i = 0;
$j = 3;
echo getMinSteps($str, $i, $j, $n);
 
// This code is contributed by aishwarya.27
?>


Javascript




// Javascript implementation of the approach
 
// Function to return the count of steps
// required to move from i to j
function getSteps(str, i, j, n)
{
    // Starting from i + 1
    let k = i + 1;
 
    // Count of steps
    let steps = 0;
 
    // Current character
    let ch = str[i];
    while (k <= j) {
 
        // If current character is different from previous
        if (str[k] != ch) {
 
            // Increment steps
            steps++;
 
            // Update current character
            ch = str[k];
        }
        k++;
    }
 
    // Return total steps
    return steps;
}
 
// Function to return the minimum number of steps
// required to reach j from i
function getMinSteps(str, i, j, n)
{
 
    // Swap the values so that i <= j
    if (j < i) {
        let temp = i;
        i = j;
        j = temp;
    }
 
    // Steps to go from i to j (left to right)
    let stepsToRight = getSteps(str, i, j, n);
 
    // While going from i to j (right to left)
    // First go from i to 0
    // then from (n - 1) to j
    let stepsToLeft = getSteps(str, 0, i, n)
                      + getSteps(str, j, n - 1, n);
 
    // If first and last character is different
    // then it'll add a step to stepsToLeft
    if (str[0] != str[n - 1])
        stepsToLeft++;
 
    // Return the minimum of two paths
    return Math.min(stepsToLeft, stepsToRight);
}
 
// Driver code
let str = "SSNSS";
let n = str.length;
let i = 0;
let j = 3;
console.log(getMinSteps(str, i, j, n));
 
// This code is contributed by Samim Hossain Mondal.


Output

0

Complexity Analysis:

  • Time Complexity: O(j)
  • Auxiliary Space: O(1)


Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads