GeeksforGeeks App
Open App
Browser
Continue

# Minimum Cost required to generate a balanced Bracket Sequence

Given a string str of length N, representing a bracket sequence, and two integers A and B, the task is to find the minimum cost required to obtain a regular bracket sequence from str by performing any number of moves(possibly zero) of the following types:

• Remove a character from the string for a cost A.
• Remove a character from the string and append at the end of the string for a cost B.

A balanced bracket sequence can be of the following types:

• Empty string
• A string consisting of a closing bracket corresponding to every opening bracket.

Examples:

Input: str = “)()”, A = 1, B = 2
Output:
Explanation:
Removal of the 0th character, that is, ‘)’, costs 1, generating a balanced string “()”. Therefore, the minimum cost is 1.

Input: str = “)(“, A = 3, B = 9
Output:
Explanation:
Removal of the 0th character and appending at the end of the string generates a balanced string “()”.
Therefore, cost = 9.
Removal of both the characters generates an empty string for a cost 6.
Therefore, the minimum cost to generate a balanced string is 6.

Approach: Follow the steps below to solve the problem:

• Count the frequencies of opening ‘(‘ and closing ‘)’ brackets in the given string and store the one more frequent of the two.
• Minimum cost will be at least a * (abs(open – count)), as these brackets need to be removed in order to balance the string.
• Count the number of unbalanced open and closing brackets in the string. If the open brackets are excess , then reduce the count of unbalanced open brackets by count of excess open brackets. Similarly, reduce count of unbalanced closing brackets if closing brackets are excess.
• Now, calculate the cost of removing all unbalanced open and unbalanced closed brackets as well as the cost of removing unbalanced closed brackets and adding them to the end. Compare and add the minimum of the two costs to the answer.
• Therefore, the minimum cost required to generate a balanced bracket sequence is given by the following equation:

Minimum Cost to generate a balanced string = a * (abs(open – close)) + min( a*(unbalanced open + unbalanced closed), b*(unbalanced closed parenthesis))

Below is the implementation of the above approach:

## C++

 `// C++ Program to implement``// the above approach``#include ``using` `namespace` `std;` `// Function to calculate the minimum cost``// required to generate a balanced bracket``// sequence``void` `minCost(string str, ``int` `a, ``int` `b)``{``    ``// Stores the count of``    ``// unbalanced open brackets``    ``int` `openUnbalanced = 0;` `    ``// Stores the count of``    ``// unbalanced closed brackets``    ``int` `closedUnbalanced = 0;` `    ``// Stores the count of``    ``// open brackets``    ``int` `openCount = 0;` `    ``// Stores the count of``    ``// closed brackets``    ``int` `closedCount = 0;` `    ``for` `(``int` `i = 0; str[i] != ``'\0'``; i++) {` `        ``// If open brace is encountered``        ``if` `(str[i] == ``'('``) {``            ``openUnbalanced++;``            ``openCount++;``        ``}` `        ``// Otherwise``        ``else` `{` `            ``// If no unbalanced open``            ``// brackets are present``            ``if` `(openUnbalanced == 0)` `                ``// Increase count of``                ``// unbalanced closed brackets``                ``closedUnbalanced++;` `            ``// Otherwise``            ``else` `                ``// Reduce count of``                ``// unbalanced open brackets``                ``openUnbalanced--;` `            ``// Increase count of``            ``// closed brackets``            ``closedCount++;``        ``}``    ``}` `    ``// Calculate lower bound of minimum cost``    ``int` `result = a * (``abs``(openCount``                          ``- closedCount));` `    ``// Reduce excess open or closed brackets``    ``// to prevent counting them twice``    ``if` `(closedCount > openCount)``        ``closedUnbalanced``            ``-= (closedCount - openCount);` `    ``if` `(openCount > closedCount)``        ``openUnbalanced``            ``-= (openCount - closedCount);` `    ``// Update answer by adding minimum of``    ``// removing both unbalanced open and``    ``// closed brackets or inserting closed``    ``// unbalanced brackets to end of string``    ``result += min(a * (openUnbalanced``                       ``+ closedUnbalanced),``                  ``b * closedUnbalanced);` `    ``// Print the result``    ``cout << result << endl;``}` `// Driver Code``int` `main()``{``    ``string str = ``"))()(()()("``;``    ``int` `A = 1, B = 3;``    ``minCost(str, A, B);` `    ``return` `0;``}`

## Java

 `// Java program to implement``// the above approach``import` `java.util.*;` `class` `GFG{` `// Function to calculate the minimum cost``// required to generate a balanced bracket``// sequence``static` `void` `minCost(String str, ``int` `a, ``int` `b)``{``    ` `    ``// Stores the count of``    ``// unbalanced open brackets``    ``int` `openUnbalanced = ``0``;` `    ``// Stores the count of``    ``// unbalanced closed brackets``    ``int` `closedUnbalanced = ``0``;` `    ``// Stores the count of``    ``// open brackets``    ``int` `openCount = ``0``;` `    ``// Stores the count of``    ``// closed brackets``    ``int` `closedCount = ``0``;` `    ``for``(``int` `i = ``0``; i < str.length(); i++)``    ``{` `        ``// If open brace is encountered``        ``if` `(str.charAt(i) == ``'('``)``        ``{``            ``openUnbalanced++;``            ``openCount++;``        ``}` `        ``// Otherwise``        ``else``        ``{``            ` `            ``// If no unbalanced open``            ``// brackets are present``            ``if` `(openUnbalanced == ``0``)` `                ``// Increase count of``                ``// unbalanced closed brackets``                ``closedUnbalanced++;` `            ``// Otherwise``            ``else` `                ``// Reduce count of``                ``// unbalanced open brackets``                ``openUnbalanced--;` `            ``// Increase count of``            ``// closed brackets``            ``closedCount++;``        ``}``    ``}` `    ``// Calculate lower bound of minimum cost``    ``int` `result = a * (Math.abs(openCount -``                             ``closedCount));` `    ``// Reduce excess open or closed brackets``    ``// to prevent counting them twice``    ``if` `(closedCount > openCount)``        ``closedUnbalanced -= (closedCount - ``                               ``openCount);` `    ``if` `(openCount > closedCount)``        ``openUnbalanced -= (openCount -``                         ``closedCount);` `    ``// Update answer by adding minimum of``    ``// removing both unbalanced open and``    ``// closed brackets or inserting closed``    ``// unbalanced brackets to end of String``    ``result += Math.min(a * (openUnbalanced +``                            ``closedUnbalanced),``                        ``b * closedUnbalanced);` `    ``// Print the result``    ``System.out.print(result + ``"\n"``);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``String str = ``"))()(()()("``;``    ``int` `A = ``1``, B = ``3``;``    ` `    ``minCost(str, A, B);``}``}` `// This code is contributed by amal kumar choubey`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to calculate the minimum cost``# required to generate a balanced bracket``# sequence``def` `minCost(``str``, a, b):` `    ``# Stores the count of``    ``# unbalanced open brackets``    ``openUnbalanced ``=` `0``;` `    ``# Stores the count of``    ``# unbalanced closed brackets``    ``closedUnbalanced ``=` `0``;` `    ``# Stores the count of``    ``# open brackets``    ``openCount ``=` `0``;` `    ``# Stores the count of``    ``# closed brackets``    ``closedCount ``=` `0``;` `    ``for` `i ``in` `range``(``len``(``str``)):` `        ``# If open brace is encountered``        ``if` `(``str``[i] ``=``=` `'('``):``            ``openUnbalanced ``+``=` `1``;``            ``openCount ``+``=` `1``;``        ` `        ``# Otherwise``        ``else``:` `            ``# If no unbalanced open``            ``# brackets are present``            ``if` `(openUnbalanced ``=``=` `0``):` `                ``# Increase count of``                ``# unbalanced closed brackets``                ``closedUnbalanced ``+``=` `1``;` `            ``# Otherwise``            ``else``:` `                ``# Reduce count of``                ``# unbalanced open brackets``                ``openUnbalanced ``-``=` `1``;` `            ``# Increase count of``            ``# closed brackets``            ``closedCount ``+``=` `1``;``        ` `    ``# Calculate lower bound of minimum cost``    ``result ``=` `a ``*` `(``abs``(openCount ``-` `closedCount));` `    ``# Reduce excess open or closed brackets``    ``# to prevent counting them twice``    ``if` `(closedCount > openCount):``        ``closedUnbalanced ``-``=` `(closedCount ``-` `openCount);` `    ``if` `(openCount > closedCount):``        ``openUnbalanced ``-``=` `(openCount ``-` `closedCount);` `    ``# Update answer by adding minimum of``    ``# removing both unbalanced open and``    ``# closed brackets or inserting closed``    ``# unbalanced brackets to end of String``    ``result ``+``=` `min``(a ``*` `(openUnbalanced ``+``                       ``closedUnbalanced),``                   ``b ``*` `closedUnbalanced);` `    ``# Print the result``    ``print``(result);` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``str` `=` `"))()(()()("``;``    ``A ``=` `1``; B ``=` `3``;` `    ``minCost(``str``, A, B);` `# This code is contributed by Rohit_ranjan`

## C#

 `// C# program to implement``// the above approach``using` `System;``class` `GFG{` `// Function to calculate the minimum cost``// required to generate a balanced bracket``// sequence``static` `void` `minCost(String str, ``int` `a, ``int` `b)``{``    ` `    ``// Stores the count of``    ``// unbalanced open brackets``    ``int` `openUnbalanced = 0;` `    ``// Stores the count of``    ``// unbalanced closed brackets``    ``int` `closedUnbalanced = 0;` `    ``// Stores the count of``    ``// open brackets``    ``int` `openCount = 0;` `    ``// Stores the count of``    ``// closed brackets``    ``int` `closedCount = 0;` `    ``for``(``int` `i = 0; i < str.Length; i++)``    ``{` `        ``// If open brace is encountered``        ``if` `(str[i] == ``'('``)``        ``{``            ``openUnbalanced++;``            ``openCount++;``        ``}` `        ``// Otherwise``        ``else``        ``{``            ` `            ``// If no unbalanced open``            ``// brackets are present``            ``if` `(openUnbalanced == 0)` `                ``// Increase count of``                ``// unbalanced closed brackets``                ``closedUnbalanced++;` `            ``// Otherwise``            ``else` `                ``// Reduce count of``                ``// unbalanced open brackets``                ``openUnbalanced--;` `            ``// Increase count of``            ``// closed brackets``            ``closedCount++;``        ``}``    ``}` `    ``// Calculate lower bound of minimum cost``    ``int` `result = a * (Math.Abs(openCount -``                               ``closedCount));` `    ``// Reduce excess open or closed brackets``    ``// to prevent counting them twice``    ``if` `(closedCount > openCount)``        ``closedUnbalanced -= (closedCount - ``                             ``openCount);` `    ``if` `(openCount > closedCount)``        ``openUnbalanced -= (openCount -``                           ``closedCount);` `    ``// Update answer by adding minimum of``    ``// removing both unbalanced open and``    ``// closed brackets or inserting closed``    ``// unbalanced brackets to end of String``    ``result += Math.Min(a * (openUnbalanced +``                           ``closedUnbalanced),``                       ``b * closedUnbalanced);` `    ``// Print the result``    ``Console.Write(result + ``"\n"``);``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``String str = ``"))()(()()("``;``    ``int` `A = 1, B = 3;``    ` `    ``minCost(str, A, B);``}``}` `// This code is contributed by gauravrajput1`

## Javascript

 ``

Output:

`4`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up