Minimum cost of choosing the array element

Given an array arr[] of N integers and an integer M and the cost of selecting any array element(say x) at any day(say d), is x*d. The task is to minimize the cost of selecting 1, 2, 3, …, N array where each day at most M elements is allowed to select.

Examples:

Input: arr[] = {6, 19, 3, 4, 4, 2, 6, 7, 8}, M = 2
Output: 2 5 11 18 30 43 62 83 121
Explanation:
For selecting 1, 2, 3, .. , N elements when at most 2 elements are allowed to select each day:

The Cost of selecting 1 element:
select one smallest element on day 1, then cost is 2*1 = 2

The Cost of selecting 2 elements:
select two smallest elements on day 1, then cost is (2+3)*1 = 5



The Cost of selecting 3 elements:
select 2nd and 3rd smallest elements on day 1, then cost is (3+4)*1 = 7
select 1st smallest element on day 2, then cost is 2*2 = 4
So, the total cost is 7 + 4 = 11

Similarly, we can find the cost for selecting 4, 5, 6, 7, 8 and 9 elements is 18, 30, 43, 62, 83 and 121 respectively.

Input: arr[] = {6, 19, 12, 6, 7, 9}, M = 3
Output: 6 12 19 34 52 78

Approach: The idea is to use Prefix Sum Array.

  1. Sort the given array in increasing order.
  2. Store the prefix sum of the sorted array in pref[]. This prefix sum gives the minimum cost of selecting the 1, 2, 3, … N array elements when atmost one element is allowed to select each day.
  3. To find the minimum cost when atmost M element is allowed to select each day, update the prefix array pref[] from index M to N as:
    pref[i] = pref[i] + pref[i-M]
    

    For Example:

    arr[] = {6, 9, 3, 4, 4, 2, 6, 7, 8}
    After sorting arr[]:
    arr[] = {2, 3, 4, 4, 6, 6, 7, 8, 9}
    
    Prefix array is:
    pref[] = {2, 5, 9, 13, 19, 25, 32, 40, 49}
    Now at every index i, pref[i] gives the cost 
    of selecting i array element when atmost one 
    element is allowed to select each day.
    
    Now for M = 3, when at most 3 elements
    are allowed to select each day, then 
    by update every index(from M to N)
    of pref[] as:
    pref[i] = pref[i] + pref[i-M] 
    
    the cost of selecting elements 
    from (i-M+1)th to ith index on day 1,
    the cost of selecting elements 
    from (i-M)th to (i-2*M)th index on day 2
    ...
    ...
    ...
    the cost of selecting elements 
    from (i-n*M)th to 0th index on day N.
    
  4. After the above step, every index(say i) of prefix array pref[] stores the cost selecting i elements when atmost M elements are allowed to select each day.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that find the minimum cost of 
// selecting array element
void minimumCost(int arr[], int N, int M) {
      
    // Sorting the given array in 
    // increasing order
    sort(arr, arr + N);
      
    // To store the prefix sum of arr[] 
    int pref[N];
      
    pref[0] = arr[0];
      
    for(int i = 1; i < N; i++) {
        pref[i] = arr[i] + pref[i-1];
    }
      
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++) {
        pref[i] += pref[i-M];
    }
      
    // Print the pref[] for the result
    for(int i = 0; i < N; i++) {
        cout << pref[i] << ' ';
    }
      
}
  
// Driver Code
int main()
{
    int arr[] = {6, 19, 3, 4, 4, 2, 6, 7, 8};
    int M = 2;
    int N = sizeof(arr)/sizeof(arr[0]);
      
    minimumCost(arr, N, M);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Function that find the minimum cost of 
// selecting array element
static void minimumCost(int arr[], int N, int M) 
{
      
    // Sorting the given array in 
    // increasing order
    Arrays.sort(arr);
      
    // To store the prefix sum of arr[] 
    int []pref = new int[N];
    pref[0] = arr[0];
      
    for(int i = 1; i < N; i++)
    {
        pref[i] = arr[i] + pref[i - 1];
    }
      
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++)
    {
        pref[i] += pref[i - M];
    }
      
    // Print the pref[] for the result
    for(int i = 0; i < N; i++) 
    {
        System.out.print(pref[i] + " ");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 6, 19, 3, 4, 4, 2, 6, 7, 8 };
    int M = 2;
    int N = arr.length;
      
    minimumCost(arr, N, M);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach 
  
# Function that find the minimum cost 
# of selecting array element 
def minimumCost(arr, N, M):
      
    # Sorting the given array in 
    # increasing order 
    arr.sort()
      
    # To store the prefix sum of arr[] 
    pref = []
      
    pref.append(arr[0])
      
    for i in range(1, N):
        pref.append(arr[i] + pref[i - 1])
      
    # Update the pref[] to find the cost 
    # selecting array element by selecting 
    # at most M element 
    for i in range(M, N):
        pref[i] += pref[i - M]
      
    # Print the pref[] for the result 
    for i in range(N):
        print(pref[i], end = ' ')
  
# Driver Code 
arr = [ 6, 19, 3, 4, 4, 2, 6, 7, 8 ]
M = 2
N = len(arr)
  
minimumCost(arr, N, M);
  
# This code is contributed by yatinagg

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG{
  
// Function that find the minimum cost  
// of selecting array element
static void minimumCost(int []arr, int N,
                                   int M) 
{
      
    // Sorting the given array  
    // in increasing order
    Array.Sort(arr);
      
    // To store the prefix sum of []arr 
    int []pref = new int[N];
    pref[0] = arr[0];
      
    for(int i = 1; i < N; i++)
    {
       pref[i] = arr[i] + pref[i - 1];
    }
      
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++)
    {
       pref[i] += pref[i - M];
    }
      
    // Print the pref[] for the result
    for(int i = 0; i < N; i++) 
    {
       Console.Write(pref[i] + " ");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 6, 19, 3, 4, 4,  
                  2, 6, 7, 8 };
    int M = 2;
    int N = arr.Length;
      
    minimumCost(arr, N, M);
}
}
  
// This code is contributed by Amit Katiyar

chevron_right


Output:

2 5 11 18 30 43 62 83 121

Time Complexity: O(N*log N), where N is the number of element in the array.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.