Skip to content
Related Articles

Related Articles

Minimize sum of smallest elements from K subsequences of length L

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 12 May, 2021

Given an array arr[] of size N, the task is to find the minimum possible sum by extracting the smallest element from any K subsequences from arr[] of length L such that each of the subsequences have no shared element. If it is not possible to get the required sum, print -1.

Examples: 

Input: arr[] = {2, 15, 5, 1, 35, 16, 67, 10}, K = 3, L = 2 
Output:
Explanation: 
Three subsequences of length 2 can be {1, 35}, {2, 15}, {5, 16} 
Minimum element of {1, 35} is 1. 
Minimum element of {2, 15} is 2. 
Minimum element of {5, 16} is 5. 
Their Sum is equal to 8 which is the minimum possible.

Input: arr[] = {19, 11, 21, 16, 22, 18, 14, 12}, K = 3, L = 3 
Output: -1 
Explanation: 
It is not possible to construct 3 subsequences of length 3 from arr[]. 

Approach: 
To optimize the above approach, we need to observe the following details: 

  • The K smallest elements of the array contribute to finding the minimum sum of the smallest elements of K subsequences.
  • The length of the array must be greater than or equal to (K * L) in order to form K subsequences of length L.

Follow the steps below to solve the problem: 

  • Check if the size of the array arr[] is greater than equal to (K * L).
  • If so, sort the array arr[] and print the sum of the first K elements of the array after sorting.
  • Otherwise, return -1.

Below is the implementation of the above approach:

C++




// C++ Program to find the minimum
// possible sum of the smallest
// elements from K subsequences
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum sum
int findMinSum(int arr[], int K,
               int L, int size)
{
 
    if (K * L > size)
        return -1;
 
    int minsum = 0;
 
    // Sort the array
    sort(arr, arr + size);
 
    // Calculate sum of smallest
    // K elements
    for (int i = 0; i < K; i++)
        minsum += arr[i];
 
    // Return the sum
    return minsum;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 15, 5, 1,
                  35, 16, 67, 10 };
    int K = 3;
    int L = 2;
 
    int length = sizeof(arr)
                / sizeof(arr[0]);
 
    cout << findMinSum(arr, K,
                       L, length);
 
    return 0;
}

Java




// Java program to find the minimum
// possible sum of the smallest
// elements from K subsequences
import java.util.Arrays;
 
class GFG{
 
// Function to find the minimum sum
static int findMinSum(int []arr, int K,
                      int L, int size)
{
    if (K * L > size)
        return -1;
 
    int minsum = 0;
 
    // Sort the array
    Arrays.sort(arr);
 
    // Calculate sum of smallest
    // K elements
    for(int i = 0; i < K; i++)
        minsum += arr[i];
 
    // Return the sum
    return minsum;
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 2, 15, 5, 1,
                  35, 16, 67, 10 };
    int K = 3;
    int L = 2;
    int length = arr.length;
 
    System.out.print(findMinSum(arr, K,
                                L, length));
}
}
 
// This code is contributed by Ritik Bansal

Python3




# Python3 program to find the minimum
# possible sum of the smallest
# elements from K subsequences
 
# Function to find the minimum sum
 
 
def findMinSum(arr, K, L, size):
 
    if (K * L > size):
        return -1
 
    minsum = 0
 
    # Sort the array
    arr.sort()
 
    # Calculate sum of smallest
    # K elements
    for i in range(K):
        minsum += arr[i]
 
    # Return the sum
    return minsum
 
 
# Driver code
if __name__ == '__main__':
 
    arr = [2, 15, 5, 1,
           35, 16, 67, 10]
    K = 3
    L = 2
 
    length = len(arr)
 
    print(findMinSum(arr, K, L, length))
 
# This code is contributed by Shivam Singh

C#




// C# program to find the minimum
// possible sum of the smallest
// elements from K subsequences
using System;
   
class GFG{
   
// Function to find the minimum sum
static int findMinSum(int []arr, int K,
                      int L, int size)
{
    if (K * L > size)
        return -1;
   
    int minsum = 0;
   
    // Sort the array
    Array.Sort(arr); 
   
    // Calculate sum of smallest
    // K elements
    for(int i = 0; i < K; i++)
        minsum += arr[i];
   
    // Return the sum
    return minsum;
}
   
// Driver Code
public static void Main() 
{
    int[] arr = { 2, 15, 5, 1,
                  35, 16, 67, 10 };
    int K = 3;
    int L = 2;
    int length = arr.Length;
   
    Console.Write(findMinSum(arr, K,
                             L, length));
}
}
 
// This code is contributed by code_hunt

Javascript




<script>
// Javascript program to find the minimum
// possible sum of the smallest
// elements from K subsequences
 
// Function to find the minimum sum
function findMinSum(arr, K, L, size)
{
    if (K * L > size)
        return -1;
 
    let minsum = 0;
 
    // Sort the array
    arr.sort((a, b) => a - b);
 
    // Calculate sum of smallest
    // K elements
    for(let i = 0; i < K; i++)
        minsum += arr[i];
 
    // Return the sum
    return minsum;
}
 
    // Driver Code
     
    let arr = [ 2, 15, 5, 1,
                  35, 16, 67, 10 ];
    let K = 3;
    let L = 2;
    let length = arr.length;
 
   document.write(findMinSum(arr, K,
                                L, length));
 
</script>

Output

8

Time Complexity: O(N * log(N)) 
Space Complexity: O(1)
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!