Open In App
Related Articles

Minimize sum of numbers required to convert an array into a permutation of first N natural numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array A[] of size N, the task is to find the minimum sum of numbers required to be added to array elements to convert the array into a permutation of 1 to N. If the array can not be converted to desired permutation, print -1.

Examples:

Input: A[] = {1, 1, 1, 1, 1}
Output: 10
Explanation: Increment A[1] by 1, A[2] by 2, A[3] by 3, A[4] by 4, thus A[] becomes {1, 2, 3, 4, 5}.
Minimum additions required = 1 + 2 + 3 + 4 = 10

Input: A[] = {2, 2, 3}
Output: -1

Approach: The idea is to use sorting. Follow these steps to solve this problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum additions required 
// to convert the array into a permutation of 1 to N
int minimumAdditions(int a[], int n)
{
    // Sort the array in increasing order
    sort(a, a + n);
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If a[i] > i + 1, then return -1
        if ((i + 1) - a[i] < 0) {
            return -1;
        }
        if ((i + 1) - a[i] > 0) {
 
            // Update answer
            ans += (i + 1 - a[i]);
        }
    }
 
    // Return the required result
    return ans;
}
 
// Driver Code
int main()
{
    // Given Input
    int A[] = { 1, 1, 1, 1, 1 };
    int n = sizeof(A) / sizeof(A[0]);
 
    // Function Call
    cout << minimumAdditions(A, n);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.Arrays;
 
public class GFG {
 
    // Function to find the minimum additions required 
    // to convert the array into a permutation of 1 to N
    static int minimumAdditions(int a[], int n)
    {
        // Sort the array in increasing order
        Arrays.sort(a);
        int ans = 0;
 
        // Traverse the array
        for (int i = 0; i < n; i++) {
 
            // If a[i] > i + 1, then return -1
            if ((i + 1) - a[i] < 0) {
                return -1;
            }
            if ((i + 1) - a[i] > 0) {
 
                // Update answer
                ans += (i + 1 - a[i]);
            }
        }
 
        // Return the required result
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
       
      // Given Input
        int A[] = { 1, 1, 1, 1, 1 };
        int n = A.length;
 
        // Function Call
        System.out.println(minimumAdditions(A, n));
    }
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 program for the above approach
 
# Function to find the minimum additions
# required to convert the array into a
# permutation of 1 to N
def minimumAdditions(a, n):
     
    # Sort the array in increasing order
    a = sorted(a)
    ans = 0
 
    # Traverse the array
    for i in range(n):
 
        # If a[i] > i + 1, then return -1
        if ((i + 1) - a[i] < 0):
            return -1
 
        if ((i + 1) - a[i] > 0):
 
            # Update answer
            ans += (i + 1 - a[i])
 
    # Return the required result
    return ans
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    A = [ 1, 1, 1, 1, 1 ]
    n = len(A)
 
    # Function Call
    print(minimumAdditions(A, n))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the minimum additions
// required to convert the array into a
// permutation of 1 to N
static int minimumAdditions(int []a, int n)
{
     
    // Sort the array in increasing order
    Array.Sort(a);
    int ans = 0;
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // If a[i] > i + 1, then return -1
        if ((i + 1) - a[i] < 0)
        {
            return -1;
        }
         
        if ((i + 1) - a[i] > 0)
        {
             
            // Update answer
            ans += (i + 1 - a[i]);
        }
    }
 
    // Return the required result
    return ans;
}
 
// Driver code
static void Main()
{
     
    // Given Input
    int[] A = { 1, 1, 1, 1, 1 };
    int n = A.Length;
     
    // Function Call
    Console.Write(minimumAdditions(A, n));
}
}
 
// This code is contributed by SoumikMondal


Javascript




<script>
// Javascript program for the above approach
 
// Function to find the minimum additions required
    // to convert the array into a permutation of 1 to N
function minimumAdditions(a, n)
{
 
    // Sort the array in increasing order
        a.sort(function(a, b){return a-b;});
        let ans = 0;
  
        // Traverse the array
        for (let i = 0; i < n; i++) {
  
            // If a[i] > i + 1, then return -1
            if ((i + 1) - a[i] < 0) {
                return -1;
            }
            if ((i + 1) - a[i] > 0) {
  
                // Update answer
                ans += (i + 1 - a[i]);
            }
        }
  
        // Return the required result
        return ans;
}
 
// Driver code
// Given Input
let A = [ 1, 1, 1, 1, 1 ];
let n = A.length;
 
// Function Call
document.write(minimumAdditions(A, n));
 
// This code is contributed by unknown2108
</script>


Output: 

10

 

Time Complexity: O(N* log(N))
Auxiliary Space: O(1)

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 07 Jul, 2021
Like Article
Save Article
Similar Reads
Related Tutorials