Maximum strength in a Matrix after performing specified operations

Given a matrix of N * M containing {0, 1, #}. The task is to find the maximum value of strength based on following rules:

  1. Initial strength is zero.
  2. If you encounter a 0, Strength decreases by 2.
  3. If you encounter a 1, Strength increases by 5.
  4. If you encounter a #, Jumps to the start of a new row without losing any strength.

Note: You have to traverse every row of the matrix in top-down order from left to right.

Example:

Input:
      {{1, 0, 1, 0},
       {0, #, 0, 0},
       {1, 1, 0, 0},
       {0, #, 1, 0}}

Output: 14
Explanation:
Here you starts with strength S = 0.

For the first row {1, 0, 1, 0}:
After {1} -> S = S + 5 = 5
After {0} -> S = S - 2 = 3
After {1} -> S = S + 5 = 8
After {0} -> S = S - 2 = 6

For the Second row {0, #, 0, 0}:
After {0} -> S = S - 2 = 4
After {#} -> Jump to next row.

For the Third row {1, 1, 0, 0}:
After {1} -> S = S + 5 = 9
After {1} -> S = S + 5 = 14
After {0} -> S = S - 2 = 12
After {0} -> S = S - 2 = 10

For the Fourth row {0, #, 1, 0}:
After {0} -> S = S - 2 = 8
After {#} -> Jump to next row.

So, The maximum value of S is 14 

Approach:

  1. Traverse the matrix mat[][] from i = [0, N], j = [0, M] and check:



    • If mat[i][j] = 0 then, S = S - 2.
    • If mat[i][j] = 1 then, S = S + 5.
    • If mat[i][j] = # then, jump to the next row.
  2. At every step store maximum value of strength till now and Print the strength at the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function return the Maximum
// value of the strength
void MaxStrength(char mat[100][100],
                 int n, int m)
{
    int S = 0;
    int ans = 0;
  
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
  
            char Curr = mat[i][j];
  
            // If current element
            // is 1
            if (Curr == '1') {
                S += 5;
            }
            // If current element
            // is 0
            if (Curr == '0') {
                S -= 2;
            }
            // If current element
            // is '#'
            if (Curr == '#') {
                break;
            }
  
            // Store the value of
            // maximum strength
            // till now
            ans = max(ans, S);
        }
    }
  
    cout << ans;
  
    return;
}
  
// Driver code
int main()
{
    int N = 4;
    int M = 4;
    char Mat[100][100]{ { '1', '0', '1', '0' },
                        { '0', '#', '0', '0' },
                        { '1', '1', '0', '0' },
                        { '0', '#', '1', '0' } };
  
    MaxStrength(Mat, N, M);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
  
class GFG{
  
// Function return the maximum
// value of the strength
static void MaxStrength(char[][] mat, 
                        int n, int m)
{
    int S = 0;
    int ans = 0;
  
    for(int i = 0; i < n; i++)
    {
       for(int j = 0; j < m; j++)
       {
          char Curr = mat[i][j];
            
          // If current element
          // is 1
          if (Curr == '1')
          {
              S += 5;
          }
            
          // If current element
          // is 0
          if (Curr == '0')
          {
              S -= 2;
          }
            
          // If current element
          // is '#'
          if (Curr == '#')
          {
              break;
          }
            
          // Store the value of
          // maximum strength
          // till now
          ans = Math.max(ans, S);
       }
    }
    System.out.println(ans);
    return;
}
  
// Driver code
public static void main (String[] args)
{
    int N = 4;
    int M = 4;
    char[][] Mat = { { '1', '0', '1', '0' },
                     { '0', '#', '0', '0' },
                     { '1', '1', '0', '0' },
                     { '0', '#', '1', '0' } };
  
    MaxStrength(Mat, N, M);
}
}
  
// This code is contributed by shubhamsingh10

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python3 program for the above approach
  
# Function return the Maximum
# value of the strength
def MaxStrength(mat, n, m):
    S = 0
    ans = 0
  
    for i in range(n):
        for j in range(m):
            Curr = mat[i][j]
  
            # If current element
            # is 1
            if (Curr == '1'):
                S += 5
                  
            # If current element
            # is 0
            if (Curr == '0'):
                S -= 2
                  
            # If current element
            # is '#'
            if (Curr == '#'):
                break
  
            # Store the value of
            # maximum strength
            # till now
            ans = max(ans, S)
  
    print(ans)
    return
  
# Driver code
if __name__ == '__main__':
      
    N = 4;
    M = 4;
    Mat = [ ['1', '0', '1', '0'],
            ['0', '#', '0', '0'],
            ['1', '1', '0', '0'],
            ['0', '#', '1', '0'] ]
              
    MaxStrength(Mat, N, M)
  
# This code is contributed by Samarth

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
  
class GFG{
  
// Function return the maximum
// value of the strength
static void MaxStrength(char[,] mat, 
                        int n, int m)
{
    int S = 0;
    int ans = 0;
  
    for(int i = 0; i < n; i++)
    {
       for(int j = 0; j < m; j++)
       {
          char Curr = mat[i, j];
            
          // If current element
          // is 1
          if (Curr == '1')
          {
              S += 5;
          }
            
          // If current element
          // is 0
          if (Curr == '0')
          {
              S -= 2;
          }
            
          // If current element
          // is '#'
          if (Curr == '#')
          {
              break;
          }
            
          // Store the value of
          // maximum strength
          // till now
          ans = Math.Max(ans, S);
       }
    }
    Console.WriteLine(ans);
    return;
}
  
// Driver code
public static void Main(String[] args)
{
    int N = 4;
    int M = 4;
    char[,] Mat = { { '1', '0', '1', '0' },
                    { '0', '#', '0', '0' },
                    { '1', '1', '0', '0' },
                    { '0', '#', '1', '0' } };
  
    MaxStrength(Mat, N, M);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Output:

14

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.