Given an array arr[] of N integers, the task is to find the maximum mod value for any pair (arr[i], arr[j]) from the array.
Examples:
Input: arr[] = {2, 4, 1, 5, 3, 6}
Output: 5
(5 % 6) = 5 is the maximum possible mod value.
Input: arr[] = {6, 6, 6, 6}
Output: 0
Approach: It is known that when an integer is divided by some other integer X, the remainder will always be less than X. So, the maximum mod value which can be obtained from the array will be when the divisor is the maximum element from the array and this value will be maximum when the dividend is the maximum among the remaining elements i.e. the second maximum element from the array which is the required answer. Note that the result will be 0 when all the elements of the array are equal.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maxMod( int arr[], int n)
{
int maxVal = *max_element(arr, arr + n);
int secondMax = 0;
for ( int i = 0; i < n; i++) {
if (arr[i] < maxVal
&& arr[i] > secondMax) {
secondMax = arr[i];
}
}
return secondMax;
}
int main()
{
int arr[] = { 2, 4, 1, 5, 3, 6 };
int n = sizeof (arr) / sizeof ( int );
cout << maxMod(arr, n);
return 0;
}
|
Java
class GFG
{
static int max_element( int arr[], int n)
{
int max = arr[ 0 ];
for ( int i = 1 ; i < n ; i++)
{
if (max < arr[i])
max = arr[i];
}
return max;
}
static int maxMod( int arr[], int n)
{
int maxVal = max_element(arr, n);
int secondMax = 0 ;
for ( int i = 0 ; i < n; i++)
{
if (arr[i] < maxVal &&
arr[i] > secondMax)
{
secondMax = arr[i];
}
}
return secondMax;
}
public static void main (String[] args)
{
int arr[] = { 2 , 4 , 1 , 5 , 3 , 6 };
int n = arr.length;
System.out.println(maxMod(arr, n));
}
}
|
Python3
def maxMod(arr, n):
maxVal = max (arr)
secondMax = 0
for i in range ( 0 , n):
if (arr[i] < maxVal and
arr[i] > secondMax):
secondMax = arr[i]
return secondMax
arr = [ 2 , 4 , 1 , 5 , 3 , 6 ]
n = len (arr)
print (maxMod(arr, n))
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int max_element( int []arr, int n)
{
int max = arr[0];
for ( int i = 1; i < n ; i++)
{
if (max < arr[i])
max = arr[i];
}
return max;
}
static int maxMod( int []arr, int n)
{
int maxVal = max_element(arr, n);
int secondMax = 0;
for ( int i = 0; i < n; i++)
{
if (arr[i] < maxVal &&
arr[i] > secondMax)
{
secondMax = arr[i];
}
}
return secondMax;
}
public static void Main (String[] args)
{
int []arr = { 2, 4, 1, 5, 3, 6 };
int n = arr.Length;
Console.WriteLine(maxMod(arr, n));
}
}
|
Javascript
<script>
function maxMod(arr, n) {
let maxVal = arr.sort((a, b) => b - a)[0]
let secondMax = 0;
for (let i = 0; i < n; i++) {
if (arr[i] < maxVal
&& arr[i] > secondMax) {
secondMax = arr[i];
}
}
return secondMax;
}
let arr = [2, 4, 1, 5, 3, 6];
let n = arr.length;
document.write(maxMod(arr, n));
</script>
|
Time Complexity: O(N).
Auxiliary Space: O(1).
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Aug, 2021
Like Article
Save Article