# Maximum of sum and product of digits until number is reduced to a single digit

Given a number N, the task is to print the maximum between the sum and multiplication of the digits of the given number until the number is reduced to a single digit.

Note: Sum and multiplication of digits to be done until the number is reduced to a single digit.

Let’s take an example where N = 19,

19 breaks into 1+9=10 then 10 breaks into 1+0=1. 1 is a single digit sum.
Also, 19 breaks into 1*9 = 9. 9 is a single digit multiplication.
So, output is 9 i.e. maximum of 9 and 1.

```Input: N = 631
Output: 8

Input: 110
Output: 2
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. Check if a number is less than 10 then sum and product will be the same. So, return that number.
2. Else,
3. Return maximum of both.

Below is the implementation of above approach:

## C++

 `// CPP implementation of above approach ` `#include ` `using` `namespace` `std; ` `    ``// Function to sum the digits until it ` `    ``// becomes a single digit ` `    ``long` `repeatedSum(``long` `n) ` `    ``{ ` `        ``if` `(n == 0) ` `            ``return` `0; ` `        ``return` `(n % 9 == 0) ? 9 : (n % 9); ` `    ``} ` ` `  `    ``// Function to product the digits until it ` `    ``// becomes a single digit ` `    ``long` `repeatedProduct(``long` `n) ` `    ``{ ` `        ``long` `prod = 1; ` ` `  `        ``// Loop to do sum while ` `        ``// sum is not less than ` `        ``// or equal to 9 ` `        ``while` `(n > 0 || prod > 9) { ` `            ``if` `(n == 0) { ` `                ``n = prod; ` `                ``prod = 1; ` `            ``} ` `            ``prod *= n % 10; ` `            ``n /= 10; ` `        ``} ` `        ``return` `prod; ` `    ``} ` ` `  `    ``// Function to find the maximum among ` `    ``// repeated sum and repeated product ` `    ``long` `maxSumProduct(``long` `N) ` `    ``{ ` ` `  `        ``if` `(N < 10) ` `            ``return` `N; ` ` `  `        ``return` `max(repeatedSum(N), repeatedProduct(N)); ` `    ``} ` ` `  `    ``// Driver code ` `    ``int` `main() ` `    ``{ ` ` `  `        ``long` `n = 631; ` `        ``cout << maxSumProduct(n)<

## Java

 `// Java implementation of above approach ` `import` `java.util.*; ` `import` `java.lang.*; ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// Function to sum the digits until it ` `    ``// becomes a single digit ` `    ``public` `static` `long` `repeatedSum(``long` `n) ` `    ``{ ` `        ``if` `(n == ``0``) ` `            ``return` `0``; ` `        ``return` `(n % ``9` `== ``0``) ? ``9` `: (n % ``9``); ` `    ``} ` ` `  `    ``// Function to product the digits until it ` `    ``// becomes a single digit ` `    ``public` `static` `long` `repeatedProduct(``long` `n) ` `    ``{ ` `        ``long` `prod = ``1``; ` ` `  `        ``// Loop to do sum while ` `        ``// sum is not less than ` `        ``// or equal to 9 ` `        ``while` `(n > ``0` `|| prod > ``9``) { ` `            ``if` `(n == ``0``) { ` `                ``n = prod; ` `                ``prod = ``1``; ` `            ``} ` `            ``prod *= n % ``10``; ` `            ``n /= ``10``; ` `        ``} ` `        ``return` `prod; ` `    ``} ` ` `  `    ``// Function to find the maximum among ` `    ``// repeated sum and repeated product ` `    ``public` `static` `long` `maxSumProduct(``long` `N) ` `    ``{ ` ` `  `        ``if` `(N < ``10``) ` `            ``return` `N; ` ` `  `        ``return` `Math.max(repeatedSum(N), repeatedProduct(N)); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` ` `  `        ``long` `n = ``631``; ` `        ``System.out.println(maxSumProduct(n)); ` `    ``} ` `} `

## Python3

 `# Python 3 implementation of above approach ` ` `  `# Function to sum the digits until  ` `# it becomes a single digit ` `def` `repeatedSum(n): ` `    ``if` `(n ``=``=` `0``): ` `        ``return` `0` `    ``return` `9` `if``(n ``%` `9` `=``=` `0``) ``else` `(n ``%` `9``) ` ` `  `# Function to product the digits  ` `# until it becomes a single digit ` `def` `repeatedProduct(n): ` `    ``prod ``=` `1` ` `  `    ``# Loop to do sum while ` `    ``# sum is not less than ` `    ``# or equal to 9 ` `    ``while` `(n > ``0` `or` `prod > ``9``) : ` `        ``if` `(n ``=``=` `0``) : ` `            ``n ``=` `prod ` `            ``prod ``=` `1` `             `  `        ``prod ``*``=` `n ``%` `10` `        ``n ``/``/``=` `10` `     `  `    ``return` `prod ` ` `  `# Function to find the maximum among ` `# repeated sum and repeated product ` `def` `maxSumProduct(N): ` ` `  `    ``if` `(N < ``10``): ` `        ``return` `N ` ` `  `    ``return` `max``(repeatedSum(N),  ` `               ``repeatedProduct(N)) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``n ``=` `631` `    ``print``(maxSumProduct(n)) ` ` `  `# This code is contributed  ` `# by ChitraNayal `

## C#

 `// C# implementation of  ` `// above approach ` `using` `System; ` `class` `GFG  ` `{ ` ` `  `// Function to sum the digits  ` `// until it becomes a single digit ` `public` `static` `long` `repeatedSum(``long` `n) ` `{ ` `    ``if` `(n == 0) ` `        ``return` `0; ` `    ``return` `(n % 9 == 0) ?  ` `                      ``9 : (n % 9); ` `} ` ` `  `// Function to product the digits  ` `// until it becomes a single digit ` `public` `static` `long` `repeatedProduct(``long` `n) ` `{ ` `    ``long` `prod = 1; ` ` `  `    ``// Loop to do sum while ` `    ``// sum is not less than ` `    ``// or equal to 9 ` `    ``while` `(n > 0 || prod > 9)  ` `    ``{ ` `        ``if` `(n == 0)  ` `        ``{ ` `            ``n = prod; ` `            ``prod = 1; ` `        ``} ` `        ``prod *= n % 10; ` `        ``n /= 10; ` `    ``} ` `    ``return` `prod; ` `} ` ` `  `// Function to find the maximum among ` `// repeated sum and repeated product ` `public` `static` `long` `maxSumProduct(``long` `N) ` `{ ` ` `  `    ``if` `(N < 10) ` `        ``return` `N; ` ` `  `    ``return` `Math.Max(repeatedSum(N),  ` `                    ``repeatedProduct(N)); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``long` `n = 631; ` `    ``Console.WriteLine(maxSumProduct(n)); ` `} ` `} ` ` `  `// This code is contributed ` `// by inder_verma `

Output:

```8
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.