Given an array of pairs of numbers of size **N**. In every pair, the first number is always smaller than the second number. A pair (c, d) can follow another pair (a, b) if b < c. The chain of pairs can be formed in this fashion. The task is to find the length of the longest chain which can be formed from a given set of pairs.

**Examples:**

Input:N = 5, arr={{5, 24}, {39, 60}, {15, 28}, {27, 40}, {50, 90} }Output:3

The longest chain that can be formed is of length 3, and the chain is {{5, 24}, {27, 40}, {50, 90}}.

Input :N = 2, arr={{5, 10}, {1, 11}}Output :1

**Approach: **A dynamic programming approach for the problem has been discussed here.

Idea is to solve the problem using the greedy approach which is the same as Activity Selection Problem.

- Sort all pairs in increasing order of second number of each pair.
- Select first no as the first pair of chain and set a variable s(say) with the second value of the first pair.
- Iterate from the second pair to last pair of the array and if the value of the first element of the current pair is greater then previously selected pair then select the current pair and update the value of maximum length and variable s.
- Return the value of Max length of chain.

Below is the implementation of the above approach.

## C++

`// C++ implementation of the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Structure for storing pairs` `// of first and second values.` `struct` `val {` ` ` `int` `first;` ` ` `int` `second;` `};` `// Comparator function which can compare` `// the second element of structure used to` `// sort pairs in increasing order of second value.` `bool` `comparator(` `struct` `val p1, ` `struct` `val p2)` `{` ` ` `return` `(p1.second < p2.second);` `}` `// Function for finding max length chain` `int` `maxChainLen(` `struct` `val p[], ` `int` `n)` `{` ` ` `// Initialize length l = 1` ` ` `int` `l = 1;` ` ` `// Sort all pair in increasing order` ` ` `// according to second no of pair` ` ` `sort(p, p + n, comparator);` ` ` `// Pick up the first pair and assign the` ` ` `// value of second element fo pair to a` ` ` `// temporary variable s` ` ` `int` `s = p[0].second;` ` ` `// Iterate from second pair (index of` ` ` `// the second pair is 1) to the last pair` ` ` `for` `(` `int` `i = 1; i < n; i++) {` ` ` `// If first of current pair is greater` ` ` `// than previously selected pair then` ` ` `// select current pair and update` ` ` `// value of l and s` ` ` `if` `(p[i].first > s) {` ` ` `l++;` ` ` `s = p[i].second;` ` ` `}` ` ` `}` ` ` `// Return maximum length` ` ` `return` `l;` `}` `// Driver Code` `int` `main()` `{` ` ` `// Declaration of array of structure` ` ` `val p[] = { { 5, 24 }, { 39, 60 }, ` ` ` `{ 15, 28 }, { 27, 40 }, { 50, 90 } };` ` ` `int` `n = ` `sizeof` `(p) / ` `sizeof` `(p[0]);` ` ` `// Fucntion call` ` ` `cout << maxChainLen(p, n) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the above approach ` `import` `java.util.*;` `// Structure for storing pairs ` `// of first and second values.` `class` `GFG{` ` ` `// Class for storing pairs ` `// of first and second values. ` `static` `class` `Pair ` `{ ` ` ` `int` `first; ` ` ` `int` `second;` ` ` ` ` `Pair(` `int` `first, ` `int` `second) ` ` ` `{` ` ` `this` `.first = first;` ` ` `this` `.second = second;` ` ` `}` `}; ` ` ` `// Function for finding max length chain ` `static` `int` `maxChainLen(Pair p[], ` `int` `n) ` `{ ` ` ` ` ` `// Initialize length l = 1 ` ` ` `int` `l = ` `1` `; ` ` ` `// Sort all pair in increasing order ` ` ` `// according to second no of pair ` ` ` `Arrays.sort(p, ` `new` `Comparator<Pair>()` ` ` `{` ` ` `public` `int` `compare(Pair a, Pair b)` ` ` `{` ` ` `return` `a.second - b.second;` ` ` `}` ` ` `}); ` ` ` `// Pick up the first pair and assign the ` ` ` `// value of second element fo pair to a ` ` ` `// temporary variable s ` ` ` `int` `s = p[` `0` `].second; ` ` ` `// Iterate from second pair (index of ` ` ` `// the second pair is 1) to the last pair ` ` ` `for` `(` `int` `i = ` `1` `; i < n; i++)` ` ` `{ ` ` ` ` ` `// If first of current pair is greater ` ` ` `// than previously selected pair then ` ` ` `// select current pair and update ` ` ` `// value of l and s ` ` ` `if` `(p[i].first > s)` ` ` `{ ` ` ` `l++; ` ` ` `s = p[i].second; ` ` ` `} ` ` ` `} ` ` ` ` ` `// Return maximum length ` ` ` `return` `l; ` `} ` `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{ ` ` ` ` ` `// Declaration of array of structure ` ` ` `Pair p[] = ` `new` `Pair[` `5` `];` ` ` `p[` `0` `] = ` `new` `Pair(` `5` `, ` `24` `);` ` ` `p[` `1` `] = ` `new` `Pair(` `39` `, ` `60` `);` ` ` `p[` `2` `] = ` `new` `Pair(` `15` `, ` `28` `);` ` ` `p[` `3` `] = ` `new` `Pair(` `27` `, ` `40` `);` ` ` `p[` `4` `] = ` `new` `Pair(` `50` `, ` `90` `); ` ` ` ` ` `int` `n = p.length; ` ` ` ` ` `// Fucntion call ` ` ` `System.out.println(maxChainLen(p, n));` `} ` `}` `// This code is contributed by adityapande88` |

**Output:**

3

**Time complexity : **O(N*log(N))

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.