Maximum element in an array such that its previous and next element product is maximum

Given an array arr[] of N integers, the task is to print the largest element among the array such that its previous and next element product is maximum.

Examples:

Input: arr[] = {5, 6, 4, 3, 2}
Output: 6
The product of the next and the previous elements
for every element of the given array are:
5 -> 2 * 6 = 12
6 -> 5 * 4 = 20
4 -> 6 * 3 = 18
3 -> 4 * 2 = 8
2 -> 3 * 5 = 15
Out of these 20 is the maximum.
Hence, 6 is the answer.



Input: arr[] = {9, 2, 3, 1, 5, 17}
Output: 17

Approach: For every element of the array, find the product of its previous and next element. The element which has the maximum product is the result. If two elements have an equal product of next and previous elements then choose the greater element among them.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include<bits/stdc++.h>
using namespace std;
  
// Function to return the largest element
// such that its previous and next
// element product is maximum
int maxElement(int a[], int n)
{
    if (n < 3)
        return -1;
  
    int maxElement = a[0];
    int maxProd = a[n - 1] * a[1];
  
    for (int i = 1; i < n; i++) 
    {
  
        // Calculate the product of the previous
        // and the next element for
        // the current element
        int currProd = a[i - 1] * a[(i + 1) % n];
  
        // Update the maximum product
        if (currProd > maxProd) 
        {
            maxProd = currProd;
            maxElement = a[i];
        }
  
        // If current product is equal to the
        // current maximum product then
        // choose the maximum element
        else if (currProd == maxProd)
        {
            maxElement = max(maxElement, a[i]);
        }
    }
  
    return maxElement;
}
  
// Driver code
int main()
{
    int a[] = { 5, 6, 4, 3, 2}; 
    int n = sizeof(a)/sizeof(a[0]); 
    cout << maxElement(a, n); 
    return 0; 
}
     

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the largest element
    // such that its previous and next
    // element product is maximum
    static int maxElement(int a[], int n)
    {
        if (n < 3)
            return -1;
  
        int maxElement = a[0];
        int maxProd = a[n - 1] * a[1];
  
        for (int i = 1; i < n; i++) {
  
            // Calculate the product of the previous
            // and the next element for
            // the current element
            int currProd = a[i - 1] * a[(i + 1) % n];
  
            // Update the maximum product
            if (currProd > maxProd) {
                maxProd = currProd;
                maxElement = a[i];
            }
  
            // If current product is equal to the
            // current maximum product then
            // choose the maximum element
            else if (currProd == maxProd) {
                maxElement = Math.max(maxElement, a[i]);
            }
        }
  
        return maxElement;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int[] a = { 5, 6, 4, 3, 2 };
        int n = a.length;
        System.out.println(maxElement(a, n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Function to return the largest element
# such that its previous and next
# element product is maximum
def maxElement(a, n):
  
    if n < 3:
        return -1
    maxElement = a[0]
    maxProd = a[n - 1] * a[1]
  
    for i in range(1, n):
          
        # Calculate the product of the previous
        # and the next element for
        # the current element
  
        currprod = a[i - 1] * a[(i + 1) % n]
  
        if currprod > maxProd:
            maxProd = currprod
            maxElement = a[i]
              
        # If current product is equal to the
        # current maximum product then
        # choose the maximum element
        elif currprod == maxProd:
            maxElement = max(maxElement, a[i])
    return maxElement
  
# Driver code
  
a = [5, 6, 4, 3, 2]
n = len(a)#sizeof(a[0])
print(maxElement(a, n))
  
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG 
  
    // Function to return the largest element 
    // such that its previous and next 
    // element product is maximum 
    static int maxElement(int []a, int n) 
    
        if (n < 3) 
            return -1; 
  
        int maxElement = a[0]; 
        int maxProd = a[n - 1] * a[1]; 
  
        for (int i = 1; i < n; i++)
        
  
            // Calculate the product of the previous 
            // and the next element for 
            // the current element 
            int currProd = a[i - 1] * a[(i + 1) % n]; 
  
            // Update the maximum product 
            if (currProd > maxProd) 
            
                maxProd = currProd; 
                maxElement = a[i]; 
            
  
            // If current product is equal to the 
            // current maximum product then 
            // choose the maximum element 
            else if (currProd == maxProd)
            
                maxElement = Math.Max(maxElement, a[i]); 
            
        
  
        return maxElement; 
    
  
    // Driver code 
    public static void Main() 
    
        int[] a = { 5, 6, 4, 3, 2 }; 
        int n = a.Length; 
        Console.WriteLine(maxElement(a, n)); 
    
  
// This code is contributed by AnkitRai01

chevron_right


Output:

6


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.