# Maximize the median of the given array after adding K elements to the same array

Given an array arr[] of N elements and an integer K where K < N. The task is to insert K integer elements to the same array such that the median of the resultant array is maximized. Print the maximized median.

Examples:

Input: arr[] = {3, 2, 3, 4, 2}, k = 2
Output: 3
{2, 2, 3, 3, 4, 5, 5} can be once such resultant array with 3 as the median.

Input: arr[] = {3, 2, 3, 4, 2}, k = 3
Output: 3.5

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: In order to maximize the median of the resultant array, all the elements that need to be inserted must be greater than the maximum element from the array. After inserting these elements, the new size of the array will be size = N + K. Sort the array and the median of the array will be arr[size / 2] if the size is odd else (arr[(size / 2) – 1] + arr[size / 2]) / 2.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the maximized median ` `float` `getMaxMedian(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``int` `size = n + k; ` ` `  `    ``// Sort the array ` `    ``sort(arr, arr + n); ` ` `  `    ``// If size is even ` `    ``if` `(size % 2 == 0) { ` `        ``float` `median = (``float``)(arr[(size / 2) - 1] ` `                               ``+ arr[size / 2]) ` `                       ``/ 2; ` `        ``return` `median; ` `    ``} ` ` `  `    ``// If size is odd ` `    ``float` `median = arr[size / 2]; ` `    ``return` `median; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 3, 2, 3, 4, 2 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``int` `k = 2; ` `    ``cout << getMaxMedian(arr, n, k); ` ` `  `    ``return` `0; ` `} `

## Java

 `import` `java.util.*; ` ` `  `// Java implementation of the approach ` `class` `GFG  ` `{ ` ` `  `    ``// Function to return the maximized median ` `    ``static` `double` `getMaxMedian(``int``[] arr, ``int` `n, ``int` `k)  ` `    ``{ ` `        ``int` `size = n + k; ` ` `  `        ``// Sort the array ` `        ``Arrays.sort(arr); ` ` `  `        ``// If size is even ` `        ``if` `(size % ``2` `== ``0``) ` `        ``{ ` `            ``double` `median = (``double``) (arr[(size / ``2``) - ``1``] ` `                    ``+ arr[size / ``2``]) ` `                    ``/ ``2``; ` `            ``return` `median; ` `        ``} ` ` `  `        ``// If size is odd ` `        ``double` `median1 = arr[size / ``2``]; ` `        ``return` `median1; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int``[] arr = {``3``, ``2``, ``3``, ``4``, ``2``}; ` `        ``int` `n = arr.length; ` `        ``int` `k = ``2``; ` `        ``System.out.print((``int``)getMaxMedian(arr, n, k)); ` ` `  `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## Python3

 `# Python 3 implementation of the approach ` ` `  `# Function to return the maximized median ` `def` `getMaxMedian(arr, n, k): ` `    ``size ``=` `n ``+` `k ` ` `  `    ``# Sort the array ` `    ``arr.sort(reverse ``=` `False``) ` ` `  `    ``# If size is even ` `    ``if` `(size ``%` `2` `=``=` `0``): ` `        ``median ``=` `(arr[``int``(size ``/` `2``) ``-` `1``] ``+`  `                  ``arr[``int``(size ``/` `2``)]) ``/` `2` `        ``return` `median ` ` `  `    ``# If size is odd ` `    ``median ``=` `arr[``int``(size ``/` `2``)] ` `    ``return` `median ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``3``, ``2``, ``3``, ``4``, ``2``] ` `    ``n ``=` `len``(arr) ` `    ``k ``=` `2` `    ``print``(getMaxMedian(arr, n, k)) ` ` `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Linq; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to return the maximized median ` `static` `double` `getMaxMedian(``int` `[]arr, ``int` `n, ``int` `k) ` `{ ` `    ``int` `size = n + k; ` ` `  `    ``// Sort the array ` `    ``Array.Sort(arr); ` ` `  `    ``// If size is even ` `    ``if` `(size % 2 == 0) ` `    ``{ ` `        ``double` `median = (``double``)(arr[(size / 2) - 1] ` `                            ``+ arr[size / 2]) ` `                    ``/ 2; ` `        ``return` `median; ` `    ``} ` ` `  `    ``// If size is odd ` `    ``double` `median1 = arr[size / 2]; ` `    ``return` `median1; ` `} ` ` `  `// Driver code ` `static` `void` `Main() ` `{ ` `    ``int` `[]arr = { 3, 2, 3, 4, 2 }; ` `    ``int` `n = arr.Length; ` `    ``int` `k = 2; ` `    ``Console.WriteLine(getMaxMedian(arr, n, k)); ` `} ` `} ` ` `  `// This code is contributed by mits `

## PHP

 `

Output:

```3
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.