Given a binary array, find the maximum number of zeros in an array with one flip of a subarray allowed. A flip operation switches all 0s to 1s and 1s to 0s.
Examples:
Input : arr[] = {0, 1, 0, 0, 1, 1, 0}
Output : 6
We can get 6 zeros by flipping the subarray {4, 5}
Input : arr[] = {0, 0, 0, 1, 0, 1}
Output : 5
Method 1 (Simple : O(n2)): A simple solution is to consider all subarrays and find a subarray with maximum value of (count of 1s) – (count of 0s). Let this value be max_diff. Finally, return count of zeros in original array plus max_diff.
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxZeroCount( bool arr[], int n)
{
int max_diff = 0;
int orig_zero_count = 0;
for ( int i=0; i<n; i++)
{
if (arr[i] == 0)
orig_zero_count++;
int count1 = 0, count0 = 0;
for ( int j=i; j<n; j++)
{
(arr[j] == 1)? count1++ : count0++;
max_diff = max(max_diff, count1 - count0);
}
}
return orig_zero_count + max_diff;
}
int main()
{
bool arr[] = {0, 1, 0, 0, 1, 1, 0};
int n = sizeof (arr)/ sizeof (arr[0]);
cout << findMaxZeroCount(arr, n);
return 0;
}
|
Java
class GFG {
public static int findMaxZeroCount( int arr[], int n)
{
int max_diff = 0 ;
int orig_zero_count = 0 ;
for ( int i= 0 ; i<n; i++)
{
if (arr[i] == 0 )
orig_zero_count++;
int count1 = 0 , count0 = 0 ;
for ( int j = i; j < n; j ++)
{
if (arr[j] == 1 )
count1++;
else count0++;
max_diff = Math.max(max_diff, count1 - count0);
}
}
return orig_zero_count + max_diff;
}
public static void main(String[] args)
{
int arr[] = { 0 , 1 , 0 , 0 , 1 , 1 , 0 };
System.out.println(findMaxZeroCount(arr, arr.length));
}
}
|
Python3
def findMaxZeroCount(arr, n):
max_diff = 0
orig_zero_count = 0
for i in range (n):
if arr[i] = = 0 :
orig_zero_count + = 1
count1, count0 = 0 , 0
for j in range (i, n):
if arr[j] = = 1 :
count1 + = 1
else :
count0 + = 1
max_diff = max (max_diff, count1 -
count0)
return orig_zero_count + max_diff
arr = [ 0 , 1 , 0 , 0 , 1 , 1 , 0 ]
n = len (arr)
print (findMaxZeroCount(arr, n))
|
C#
using System;
class GFG{
public static int findMaxZeroCount( int []arr,
int n)
{
int max_diff = 0;
int orig_zero_count = 0;
for ( int i = 0; i < n; i++)
{
if (arr[i] == 0)
orig_zero_count++;
int count1 = 0, count0 = 0;
for ( int j = i; j < n; j ++)
{
if (arr[j] == 1)
count1++;
else count0++;
max_diff = Math.Max(max_diff,
count1 - count0);
}
}
return orig_zero_count + max_diff;
}
public static void Main(String[] args)
{
int []arr = { 0, 1, 0, 0, 1, 1, 0 };
Console.WriteLine(
findMaxZeroCount(arr, arr.Length));
}
}
|
Javascript
<script>
function findMaxZeroCount(arr, n)
{
let max_diff = 0;
let orig_zero_count = 0;
for (let i=0; i<n; i++)
{
if (arr[i] == 0)
orig_zero_count++;
let count1 = 0, count0 = 0;
for (let j=i; j<n; j++)
{
(arr[j] == 1)? count1++ : count0++;
max_diff = Math.max(max_diff, count1 - count0);
}
}
return orig_zero_count + max_diff;
}
let arr = [0, 1, 0, 0, 1, 1, 0];
let n = arr.length;
document.write(findMaxZeroCount(arr, n));
</script>
|
Time Complexity: O(n2)
Auxiliary Space: O(1)
As constant extra space is used.
Method 2 (Efficient : O(n)): This problem can be reduced to largest subarray sum problem. The idea is to consider every 0 as -1 and every 1 as 1, find the sum of largest subarray sum in this modified array. This sum is our required max_diff ( count of 0s – count of 1s in any subarray). Finally we return the max_diff plus count of zeros in original array.
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxZeroCount( bool arr[], int n)
{
int orig_zero_count = 0;
int max_diff = 0;
int curr_max = 0;
for ( int i=0; i<n; i++)
{
if (arr[i] == 0)
orig_zero_count++;
int val = (arr[i] == 1)? 1 : -1;
curr_max = max(val, curr_max + val);
max_diff = max(max_diff, curr_max);
}
max_diff = max(0, max_diff);
return orig_zero_count + max_diff;
}
int main()
{
bool arr[] = {0, 1, 0, 0, 1, 1, 0};
int n = sizeof (arr)/ sizeof (arr[0]);
cout << findMaxZeroCount(arr, n);
return 0;
}
|
Java
class GFG {
public static int findMaxZeroCount( int arr[], int n)
{
int orig_zero_count = 0 ;
int max_diff = 0 ;
int curr_max = 0 ;
for ( int i = 0 ; i < n; i ++)
{
if (arr[i] == 0 )
orig_zero_count ++;
int val = (arr[i] == 1 )? 1 : - 1 ;
curr_max = Math.max(val, curr_max + val);
max_diff = Math.max(max_diff, curr_max);
}
max_diff = Math.max( 0 , max_diff);
return orig_zero_count + max_diff;
}
public static void main(String[] args)
{
int arr[] = { 0 , 1 , 0 , 0 , 1 , 1 , 0 };
System.out.println(findMaxZeroCount(arr, arr.length));
}
}
|
Python3
def findMaxZeroCount(arr, n):
orig_zero_count = 0
max_diff = 0
curr_max = 0
for i in range (n):
if arr[i] = = 0 :
orig_zero_count + = 1
val = 1 if arr[i] = = 1 else - 1
curr_max = max (val, curr_max + val)
max_diff = max (max_diff, curr_max)
max_diff = max ( 0 , max_diff)
return orig_zero_count + max_diff
arr = [ 0 , 1 , 0 , 0 , 1 , 1 , 0 ]
n = len (arr)
print (findMaxZeroCount(arr, n))
|
C#
using System;
class GFG{
public static int findMaxZeroCount( int []arr, int n)
{
int orig_zero_count = 0;
int max_diff = 0;
int curr_max = 0;
for ( int i = 0; i < n; i ++)
{
if (arr[i] == 0)
orig_zero_count ++;
int val = (arr[i] == 1)? 1 : -1;
curr_max = Math.Max(val, curr_max + val);
max_diff = Math.Max(max_diff, curr_max);
}
max_diff = Math.Max(0, max_diff);
return orig_zero_count + max_diff;
}
public static void Main(String[] args)
{
int []arr = {0, 1, 0, 0, 1, 1, 0};
Console.WriteLine(findMaxZeroCount(arr, arr.Length));
}
}
|
Javascript
<script>
function findMaxZeroCount(arr, n)
{
var orig_zero_count = 0;
var max_diff = 0;
var curr_max = 0;
for ( var i=0; i<n; i++)
{
if (arr[i] == 0)
orig_zero_count++;
var val;
if (arr[i] == 1)
val=1;
else
val=-1;
curr_max = Math.max(val, curr_max + val);
max_diff = Math.max(max_diff, curr_max);
}
max_diff = Math.max(0, max_diff);
return orig_zero_count + max_diff;
}
var arr = [0, 1, 0, 0, 1, 1, 0];
var n=7;
document.write(findMaxZeroCount(arr, n));
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
As constant extra space is used.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Feb, 2023
Like Article
Save Article