Skip to content
Related Articles

Related Articles

Matplotlib.axis.Tick.set_clip_on() function in Python
  • Last Updated : 10 Jun, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
 

Matplotlib.axis.Tick.set_clip_on() Function

The Tick.set_clip_on() function in axis module of matplotlib library is used to set whether the artist uses clipping. 
 

Syntax: Tick.set_clip_on(self, b) 
 

Parameters: This method accepts the following parameters. 
 

  • b: This parameter contains the boolean value.

Return value: This method does not return any value. 



Below examples illustrate the matplotlib.axis.Tick.set_clip_on() function in matplotlib.axis:
Example 1:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import numpy as np  
from matplotlib.patches import Ellipse  
       
     
delta = 5.0
       
angles = np.arange(0, 360 + delta, delta)  
ells = [Ellipse((2, 2), 5, 2, a) for a in angles]  
       
fig, ax = plt.subplots()  
       
for e in ells:  
    e.set_alpha(0.1)  
    ax.add_artist(e)  
           
ax.set_xlim(-1, 5)  
ax.set_ylim(-1, 5)  
Tick.set_clip_on(ax, b = False)
  
fig.suptitle('matplotlib.axis.Tick.set_clip_on() \
function Example', fontweight ="bold")  
     
plt.show() 

Output: 
 

Example 2:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Tick
import matplotlib.pyplot as plt  
import matplotlib.patches as mpatches  
import matplotlib.transforms as mtransforms  
       
       
x0 = 1.05
       
arrow_style ="simple, head_length = 15, \
head_width = 25, tail_width = 10"  
rect_style ="simple, tail_width = 25"
line_style ="simple, tail_width = 1"
       
fig, ax = plt.subplots()  
       
trans = mtransforms.blended_transform_factory(ax.transAxes, 
                                              ax.transData)  
       
y_tail = 0
y_head = 10
arrow1 = mpatches.FancyArrowPatch((x0, y_tail),   
                                  (x0, y_head),  
                                   arrowstyle = arrow_style,  
                                   transform = trans) 
     
Tick.set_clip_on(arrow1, b = False
ax.add_patch(arrow1)  
       
ax.set_xlim(0, 10)  
ax.set_ylim(0, 10
  
fig.suptitle('matplotlib.axis.Tick.set_clip_on() \
function Example', fontweight ="bold")  
     
plt.show() 

Output: 
 

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :