Skip to content
Related Articles

Related Articles

Improve Article

Mahotas – Element Structure for Eroding Image

  • Last Updated : 29 Apr, 2021

In this article we will see how we can set the element structure for erode of the image in mahotas. Erosion (usually represented by ?) is one of two fundamental operations (the other being dilation) in morphological image processing from which all other morphological operations are based. It was originally defined for binary images, later being extended to grayscale images, and subsequently to complete lattices. In order to erode the image we use mahotas.morph.erode method.
In this tutorial we will use “luispedro” image, below is the command to load it.
 

mahotas.demos.load('luispedro')

Below is the luispedro image 
 

Below is the default structure of the element for erosion, which a 1 cross 
 

np.array([
        [0, 1, 0],
        [1, 1, 1],
        [0, 1, 0]], 
        bool)

Below is the implementation 
 



Python3




# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
 
# loading image
luispedro = mahotas.demos.load('luispedro')
 
# filtering image
luispedro = luispedro.max(2)
 
# otsu method
T_otsu = mahotas.otsu(luispedro)
  
 
# image values should be greater than otsu value
img = luispedro > T_otsu
 
print("Image threshold using Otsu Mehtod")
 
# showing image
imshow(img)
show()
 
# erode structure
es = np.array([
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1]], bool)
 
 
# eroding image using element structure
new_img = mahotas.morph.erode(img, es)
 
# showing dilated image
print("Eroded Image")
imshow(new_img)
show()

Output : 
 

Image threshold using Otsu Mehtod

 

 

Eroded Image

 

Another example 
 



Python3




# importing required libraries
import mahotas
import numpy as np
import matplotlib.pyplot as plt
import os
  
# loading image
img = mahotas.imread('dog_image.png')
       
# setting filter to the image
img = img[:, :, 0]
 
# otsu method
T_otsu = mahotas.otsu(img)
  
 
# image values should be greater than otsu value
img = img > T_otsu
 
print("Image threshold using Otsu Mehtod")
 
# showing image
imshow(img)
show()
 
# erode structure
es = np.array([
        [0, 0, 0],
        [0, 1, 0],
        [0, 0, 0]], bool)
 
 
# eroding image using element structure
new_img = mahotas.morph.erode(img, es)
 
# showing dilated image
print("Eroded Image")
imshow(new_img)
show()

Output : 
 

Image threshold using Otsu Mehtod

 

 

Eroded Image

 

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :