Mahotas – Element Structure for Dilating Image

In this article we will see how we can set the element structure of the dilate of image in mahotas. Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object boundaries. The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring element used to process the image. In order to dilate the image we use mahotas.morph.dilate method.By setting element structure we can increase or decrease the dilating effect on the image.

In this tutorial we will use “luispedro” image, below is the command to load it.

mahotas.demos.load('luispedro')

Below is the luispedro image

Implementation steps :
1. Load the image
2. Filter the image
3. Use otsu method for threshold of the image
4. Create a structure of the element with the help of numpy ndarray for binary values
5. Use the element for dilating the image

Below is the implementation



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
   
# loading iamge
luispedro = mahotas.demos.load('luispedro')
   
# filtering image
luispedro = luispedro.max(2)
   
# otsu method
T_otsu = mahotas.otsu(luispedro)
    
# image values should be greater than otsu value
img = luispedro > T_otsu
   
print("Image threshold using Otsu Mehtod")
   
# showing image
imshow(img)
show()
   
# erode strcture
es = np.array([
        [1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]], bool)
  
# dilating image
dilate_img = mahotas.morph.dilate(img, es)
   
# showing dilated image
print("Dilated Image")
imshow(dilate_img)
show()

chevron_right


Output :

Image threshold using Otsu Mehtod

Dilated Image

Another example

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing required libraries
import mahotas
import numpy as np
import matplotlib.pyplot as plt
import os
   
# loading iamge
img = mahotas.imread('dog_image.png')
        
# setting filter to the image
img = img[:, :, 0]
  
# otsu method
T_otsu = mahotas.otsu(img)
   
  
# image values should be greater than otsu value
img = img > T_otsu
  
print("Image threshold using Otsu Mehtod")
  
# showing image
imshow(img)
show()
  
# erode strcture
es = np.array([
        [1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]], bool)
  
# dilating image
dilate_img = mahotas.morph.dilate(img, es)
   
# showing dilated image
print("Dilated Image")
imshow(dilate_img)
show()

chevron_right


Output :

Image threshold using Otsu Mehtod

Dilated Image

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.