Given a set of words represented in a ternary search tree, find the length of largest word among them.
Examples:
Input : {"Prakriti", "Raghav", "Rashi", "Sunidhi"} Output : Length of largest word in ternary search tree is: 8 Input : {"Boats", "Boat", "But", "Best"} Output : Length of largest word in ternary search tree is: 5
Prerequisite : Ternary Search Tree
The idea is to recursively search the max of left subtree, right subtree and equal tree.
If the current character is same as the root’s character increment with 1.
C
// C program to find the length of largest word // in ternary search tree #include <stdio.h> #include <stdlib.h> #define MAX 50 // A node of ternary search tree struct Node { char data; // True if this character is last // character of one of the words unsigned isEndOfString: 1; struct Node *left, *eq, *right; }; // A utility function to create a new // ternary search tree node struct Node* newNode( char data) { struct Node* temp = ( struct Node*) malloc ( sizeof ( struct Node )); temp->data = data; temp->isEndOfString = 0; temp->left = temp->eq = temp->right = NULL; return temp; } // Function to insert a new word in a Ternary // Search Tree void insert( struct Node** root, char *word) { // Base Case: Tree is empty if (!(*root)) *root = newNode(*word); // If current character of word is smaller // than root's character, then insert this // word in left subtree of root if ((*word) < (*root)->data) insert(&( (*root)->left ), word); // If current character of word is greater // than root's character, then insert this // word in right subtree of root else if ((*word) > (*root)->data) insert(&( (*root)->right ), word); // If current character of word is same as // root's character, else { if (*(word+1)) insert(&( (*root)->eq ), word+1); // the last character of the word else (*root)->isEndOfString = 1; } } // Function to find max of three numbers int max( int a, int b, int c) { int max; if (a >= b && a >= c) max = a; else if (b >= a && b >= c) max = b; else max = c; } // Function to find length of largest word in TST int maxLengthTST( struct Node *root) { if (root == NULL) return 0; return max(maxLengthTST(root->left), maxLengthTST(root->eq)+1, maxLengthTST(root->right)); } // Driver program to test above functions int main() { struct Node *root = NULL; insert(&root, "Prakriti" ); insert(&root, "Raghav" ); insert(&root, "Rashi" ); insert(&root, "Sunidhi" ); int value = maxLengthTST(root); printf ( "Length of largest word in " "ternary search tree is: %d\n" , value); return 0; } |
Java
// Java program to find the length of largest word // in ternary search tree public class GFG { static final int MAX = 50 ; // A node of ternary search tree static class Node { char data; // True if this character is last // character of one of the words int isEndOfString = 1 ; Node left, eq, right; // constructor Node( char data) { this .data = data; isEndOfString = 0 ; left = null ; eq = null ; right = null ; } } // Function to insert a new word in a Ternary // Search Tree static Node insert(Node root, String word, int i) { // Base Case: Tree is empty if (root == null ) root = new Node(word.charAt(i)); // If current character of word is smaller // than root's character, then insert this // word in left subtree of root if (word.charAt(i) < root.data) root.left = insert(root.left, word, i); // If current character of word is greater // than root's character, then insert this // word in right subtree of root else if (word.charAt(i) > root.data) root.right = insert(root.right, word, i); // If current character of word is same as // root's character, else { if (i + 1 < word.length()) root.eq = insert(root.eq, word, i + 1 ); // the last character of the word else root.isEndOfString = 1 ; } return root; } // Function to find max of three numbers static int max( int a, int b, int c) { int max; if (a >= b && a >= c) max = a; else if (b >= a && b >= c) max = b; else max = c; return max; } // Function to find length of largest word in TST static int maxLengthTST(Node root) { if (root == null ) return 0 ; return max(maxLengthTST(root.left), maxLengthTST(root.eq)+ 1 , maxLengthTST(root.right)); } // Driver program to test above functions public static void main(String args[]) { Node root = null ; root = insert(root, "Prakriti" , 0 ); root = insert(root, "Raghav" , 0 ); root = insert(root, "Rashi" , 0 ); root = insert(root, "Sunidhi" , 0 ); int value = maxLengthTST(root); System.out.println( "Length of largest word in " + "ternary search tree is: " + value); } } // This code is contributed by Sumit Ghosh |
C#
// C# program to find the length of largest word // in ternary search tree using System; class GFG { static readonly int MAX = 50; // A node of ternary search tree public class Node { public char data; // True if this character is last // character of one of the words public int isEndOfString = 1; public Node left, eq, right; // constructor public Node( char data) { this .data = data; isEndOfString = 0; left = null ; eq = null ; right = null ; } } // Function to insert a new word in a Ternary // Search Tree static Node insert(Node root, String word, int i) { // Base Case: Tree is empty if (root == null ) root = new Node(word[i]); // If current character of word is smaller // than root's character, then insert this // word in left subtree of root if (word[i] < root.data) root.left = insert(root.left, word, i); // If current character of word is greater // than root's character, then insert this // word in right subtree of root else if (word[i] > root.data) root.right = insert(root.right, word, i); // If current character of word is same as // root's character, else { if (i + 1 < word.Length) root.eq = insert(root.eq, word, i + 1); // the last character of the word else root.isEndOfString = 1; } return root; } // Function to find max of three numbers static int max( int a, int b, int c) { int max; if (a >= b && a >= c) max = a; else if (b >= a && b >= c) max = b; else max = c; return max; } // Function to find length of largest word in TST static int maxLengthTST(Node root) { if (root == null ) return 0; return max(maxLengthTST(root.left), maxLengthTST(root.eq) + 1, maxLengthTST(root.right)); } // Driver code public static void Main() { Node root = null ; root = insert(root, "Prakriti" , 0); root = insert(root, "Raghav" , 0); root = insert(root, "Rashi" , 0); root = insert(root, "Sunidhi" , 0); int value = maxLengthTST(root); Console.WriteLine( "Length of largest word in " + "ternary search tree is: " + value); } } /* This code contributed by PrinciRaj1992 */ |
Output:
Length of largest word in ternary search tree is: 8
This article is contributed by Prakriti Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.