Longest Subsequence where index of next element is arr[arr[i] + i]

Given an array arr[], the task is to find the maximum length sub-sequence from the array which satisfy the following condition:
Any element can be chosen as the first element of the sub-sequence but the index of the next element will be determined by arr[arr[i] + i] where i is the index of the previous element in the sequence.

Examples:

Input: arr[] = {1, 2, 3, 4, 5}
Output: 1 2 4
arr[0] = 1, arr[1 + 0] = arr[1] = 2, arr[2 + 1] = arr[3] = 4
Other possible sub-sequences are {2, 4}, {3}, {4} and {5}



Input: arr[] = {1, 6, 3, 1, 12, 1, 4}
Output: 3 1 4

Approach:

  • Make use of two arrays temp and print.
  • The temp array will store the array elements that are currently under consideration and the print array will store the array elements that are to be printed as the final output.
  • Iterate from 0 to n – 1 and consider the current element as the first element of the sequence.
  • Store all the elements of the current sequence into temp array.
  • If the size of the temp array becomes greater than print array then copy all the contents of the temp array to the print array.
  • When all the sequences have been considered, print the contents of the print array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the maximum length sub-sequence
void maxLengthSubSeq(int a[], int n)
{
    // Arrays to store the values to be printed
    int temp[n], print[n];
    int y = 0;
  
    for (int i = 0; i < n; i++) {
        int j = 0;
        int x = 0;
  
        // Store the first value into the temp array
        temp[j++] = a[x];
  
        // Index of the next element
        x = a[x] + x;
  
        // Iterate till index is in range of the array
        while (x < n) {
            temp[j++] = a[x];
            x = a[x] + x;
        }
  
        // If the length (temp) > the length (print) then
        // copy the contents of the temp array into
        // the print array
        if (y < j) {
            for (int k = 0; k < j; k++) {
                print[k] = temp[k];
                y = j;
            }
        }
    }
  
    // Print the contents of the array
    for (int i = 0; i < y; i++)
        cout << print[i] << " ";
}
  
// Driver code
int main()
{
    int a[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(a) / sizeof(a[0]);
    maxLengthSubSeq(a, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java  implementation of the approach/
  
import java.io.*;
  
class GFG {
      
// Function to print the maximum length sub-sequence
static void maxLengthSubSeq(int a[], int n)
{
    // Arrays to store the values to be printed
    int temp[]=new int[n];
    int print[]=new int[n];
    int y = 0;
  
    for (int i = 0; i < n; i++) {
        int j = 0;
        int x = 0;
  
        // Store the first value into the temp array
        temp[j++] = a[x];
  
        // Index of the next element
        x = a[x] + x;
  
        // Iterate till index is in range of the array
        while (x < n) {
            temp[j++] = a[x];
            x = a[x] + x;
        }
  
        // If the length (temp) > the length (print) then
        // copy the contents of the temp array into
        // the print array
        if (y < j) {
            for (int k = 0; k < j; k++) {
                print[k] = temp[k];
                y = j;
            }
        }
    }
  
    // Print the contents of the array
    for (int i = 0; i < y; i++)
            System.out.print(print[i] + " ");
}
  
// Driver code
    public static void main (String[] args) {
  
    int a[] = { 1, 2, 3, 4, 5 };
    int n = a.length;
    maxLengthSubSeq(a, n);
    }
//This code is contributed by @Tushil.    
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to print the maximum length 
# sub-sequence
def maxLengthSubSeq(a, n):
      
    # Arrays to store the values to be printed
    temp = [0 for i in range(n)]
    print1 = [0 for i in range(n)]
    y = 0
  
    for i in range(0, n, 1):
        j = 0
        x = 0
  
        # Store the first value into 
        # the temp array
        temp[j] = a[x]
        j += 1
  
        # Index of the next element
        x = a[x] + x
  
        # Iterate till index is in range 
        # of the array
        while (x < n):
            temp[j] = a[x]
            j += 1
            x = a[x] + x
          
        # If the length (temp) > the length 
        # (print) then copy the contents of 
        # the temp array into the print array
        if (y < j):
            for k in range(0, j, 1):
                print1[k] = temp[k]
                y = j
              
    # Print the contents of the array
    for i in range(0, y, 1):
        print(print1[i], end = " ")
  
# Driver code
if __name__ == '__main__':
    a = [1, 2, 3, 4, 5]
    n = len(a)
    maxLengthSubSeq(a, n)
  
# This code is contributed by 
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

//C# implementation of the approach/
  
using System;
  
public class GFG{
          
// Function to print the maximum length sub-sequence
static void maxLengthSubSeq(int []a, int n)
{
    // Arrays to store the values to be printed
    int []temp=new int[n];
    int []print=new int[n];
    int y = 0;
  
    for (int i = 0; i < n; i++) {
        int j = 0;
        int x = 0;
  
        // Store the first value into the temp array
        temp[j++] = a[x];
  
        // Index of the next element
        x = a[x] + x;
  
        // Iterate till index is in range of the array
        while (x < n) {
            temp[j++] = a[x];
            x = a[x] + x;
        }
  
        // If the length (temp) > the length (print) then
        // copy the contents of the temp array into
        // the print array
        if (y < j) {
            for (int k = 0; k < j; k++) {
                print[k] = temp[k];
                y = j;
            }
        }
    }
  
    // Print the contents of the array
    for (int i = 0; i < y; i++)
            Console.Write(print[i] + " ");
}
  
// Driver code
    static public void Main (){
          
    int []a = { 1, 2, 3, 4, 5 };
    int n = a.Length;
    maxLengthSubSeq(a, n);
    }
//This code is contributed by ajit. 
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to print the maximum
// length sub-sequence
function maxLengthSubSeq($a, $n)
{
    $y = 0;
  
    for ($i = 0; $i < $n; $i++)
    {
        $j = 0;
        $x = 0;
  
        // Store the first value into 
        // the temp array
        $temp[$j++] = $a[$x];
  
        // Index of the next element
        $x = $a[$x] + $x;
  
        // Iterate till index is in
        // range of the array
        while ($x < $n)
        {
            $temp[$j++] = $a[$x];
            $x = $a[$x] + $x;
        }
  
        // If the length (temp) > the length 
        // (print) then copy the contents of 
        // the temp array into the print array
        if ($y < $j)
        {
            for ($k = 0; $k < $j; $k++)
            {
                $print[$k] = $temp[$k];
                $y = $j;
            }
        }
    }
  
    // Print the contents of the array
    for ($i = 0; $i < $y; $i++)
        echo $print[$i] . " ";
}
  
// Driver code
$a = array(1, 2, 3, 4, 5);
$n = sizeof($a);
maxLengthSubSeq($a, $n);
  
// This code is contributed
// by Akanksha Rai

chevron_right


Output:

1 2 4


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.