# Longest Decreasing Subsequence

• Difficulty Level : Medium
• Last Updated : 11 May, 2021

Given an array of N integers, find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in strictly decreasing order.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = [15, 27, 14, 38, 63, 55, 46, 65, 85]
Output:
Explanation: The longest decreasing subsequence is {63, 55, 46}
Input: arr[] = {50, 3, 10, 7, 40, 80}
Output:
Explanation: The longest decreasing subsequence is {50, 10, 7}

The problem can be solved using Dynamic Programming
Optimal Substructure:
Let arr[0…n-1] be the input array and lds[i] be the length of the LDS ending at index i such that arr[i] is the last element of the LDS.
Then, lds[i] can be recursively written as:

lds[i] = 1 + max(lds[j]) where i > j > 0 and arr[j] > arr[i] or
lds[i] = 1, if no such j exists.

To find the LDS for a given array, we need to return max(lds[i]) where n > i > 0.

## C++

 `// CPP program to find the length of the``// longest decreasing subsequence``#include ``using` `namespace` `std;` `// Function that returns the length``// of the longest decreasing subsequence``int` `lds(``int` `arr[], ``int` `n)``{``    ``int` `lds[n];``    ``int` `i, j, max = 0;` `    ``// Initialize LDS with 1 for all index``    ``// The minimum LDS starting with any``    ``// element is always 1``    ``for` `(i = 0; i < n; i++)``        ``lds[i] = 1;` `    ``// Compute LDS from every index``    ``// in bottom up manner``    ``for` `(i = 1; i < n; i++)``        ``for` `(j = 0; j < i; j++)``            ``if` `(arr[i] < arr[j] && lds[i] < lds[j] + 1)``                ``lds[i] = lds[j] + 1;` `    ``// Select the maximum``    ``// of all the LDS values``    ``for` `(i = 0; i < n; i++)``        ``if` `(max < lds[i])``            ``max = lds[i];` `    ``// returns the length of the LDS``    ``return` `max;``}``// Driver Code``int` `main()``{``    ``int` `arr[] = { 15, 27, 14, 38, 63, 55, 46, 65, 85 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << ``"Length of LDS is "` `<< lds(arr, n);``    ``return` `0;``}`

## Java

 `// Java program to find the``// length of the longest``// decreasing subsequence``import` `java.io.*;` `class` `GFG``{` `// Function that returns the``// length of the longest``// decreasing subsequence``static` `int` `lds(``int` `arr[], ``int` `n)``{``    ``int` `lds[] = ``new` `int``[n];``    ``int` `i, j, max = ``0``;` `    ``// Initialize LDS with 1``    ``// for all index. The minimum``    ``// LDS starting with any``    ``// element is always 1``    ``for` `(i = ``0``; i < n; i++)``        ``lds[i] = ``1``;` `    ``// Compute LDS from every``    ``// index in bottom up manner``    ``for` `(i = ``1``; i < n; i++)``        ``for` `(j = ``0``; j < i; j++)``            ``if` `(arr[i] < arr[j] &&``                         ``lds[i] < lds[j] + ``1``)``                ``lds[i] = lds[j] + ``1``;` `    ``// Select the maximum``    ``// of all the LDS values``    ``for` `(i = ``0``; i < n; i++)``        ``if` `(max < lds[i])``            ``max = lds[i];` `    ``// returns the length``    ``// of the LDS``    ``return` `max;``}``// Driver Code``public` `static` `void` `main (String[] args)``{``    ``int` `arr[] = { ``15``, ``27``, ``14``, ``38``,``                  ``63``, ``55``, ``46``, ``65``, ``85` `};``    ``int` `n = arr.length;``    ``System.out.print(``"Length of LDS is "` `+``                             ``lds(arr, n));``}``}` `// This code is contributed by anuj_67.`

## Python 3

 `# Python 3 program to find the length of``# the longest decreasing subsequence` `# Function that returns the length``# of the longest decreasing subsequence``def` `lds(arr, n):` `    ``lds ``=` `[``0``] ``*` `n``    ``max` `=` `0` `    ``# Initialize LDS with 1 for all index``    ``# The minimum LDS starting with any``    ``# element is always 1``    ``for` `i ``in` `range``(n):``        ``lds[i] ``=` `1` `    ``# Compute LDS from every index``    ``# in bottom up manner``    ``for` `i ``in` `range``(``1``, n):``        ``for` `j ``in` `range``(i):``            ``if` `(arr[i] < arr[j] ``and``                ``lds[i] < lds[j] ``+` `1``):``                ``lds[i] ``=` `lds[j] ``+` `1` `    ``# Select the maximum``    ``# of all the LDS values``    ``for` `i ``in` `range``(n):``        ``if` `(``max` `< lds[i]):``            ``max` `=` `lds[i]` `    ``# returns the length of the LDS``    ``return` `max` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``arr ``=` `[ ``15``, ``27``, ``14``, ``38``,``            ``63``, ``55``, ``46``, ``65``, ``85` `]``    ``n ``=` `len``(arr)``    ``print``(``"Length of LDS is"``, lds(arr, n))` `# This code is contributed by ita_c`

## C#

 `// C# program to find the``// length of the longest``// decreasing subsequence``using` `System;` `class` `GFG``{` `// Function that returns the``// length of the longest``// decreasing subsequence``static` `int` `lds(``int` `[]arr, ``int` `n)``{``    ``int` `[]lds = ``new` `int``[n];``    ``int` `i, j, max = 0;` `    ``// Initialize LDS with 1``    ``// for all index. The minimum``    ``// LDS starting with any``    ``// element is always 1``    ``for` `(i = 0; i < n; i++)``        ``lds[i] = 1;` `    ``// Compute LDS from every``    ``// index in bottom up manner``    ``for` `(i = 1; i < n; i++)``        ``for` `(j = 0; j < i; j++)``            ``if` `(arr[i] < arr[j] &&``                        ``lds[i] < lds[j] + 1)``                ``lds[i] = lds[j] + 1;` `    ``// Select the maximum``    ``// of all the LDS values``    ``for` `(i = 0; i < n; i++)``        ``if` `(max < lds[i])``            ``max = lds[i];` `    ``// returns the length``    ``// of the LDS``    ``return` `max;``}``// Driver Code``public` `static` `void` `Main ()``{``    ``int` `[]arr = { 15, 27, 14, 38,``                ``63, 55, 46, 65, 85 };``    ``int` `n = arr.Length;``    ``Console.Write(``"Length of LDS is "` `+``                          ``lds(arr, n));``}``}` `// This code is contributed by anuj_67.`

## PHP

 ``

## Javascript

 ``
Output :
`Length of LDS is 3`

Time Complexity: O(n2
Auxiliary Space: O(n)
Related Article: https://www.geeksforgeeks.org/longest-increasing-subsequence/

My Personal Notes arrow_drop_up