 Open in App
Not now

# Longest Bitonic Subsequence | DP-15

• Difficulty Level : Medium
• Last Updated : 14 Jul, 2022

Given an array arr[0 … n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence.
A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty.
Examples:

```Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1};
Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1)

Input arr[] = {12, 11, 40, 5, 3, 1}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1)

Input arr[] = {80, 60, 30, 40, 20, 10}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)```

Source: Microsoft Interview Question

Solution
This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. Let the input array be arr[] of length n. We need to construct two arrays lis[] and lds[] using Dynamic Programming solution of LIS problem. lis[i] stores the length of the Longest Increasing subsequence ending with arr[i]. lds[i] stores the length of the longest Decreasing subsequence starting from arr[i]. Finally, we need to return the max value of lis[i] + lds[i] – 1 where i is from 0 to n-1.
Following is the implementation of the above Dynamic Programming solution.

## C++

 `/* Dynamic Programming implementation of longest bitonic subsequence problem */``#include``#include`` ` `/* lbs() returns the length of the Longest Bitonic Subsequence in``    ``arr[] of size n. The function mainly creates two temporary arrays``    ``lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.`` ` `    ``lis[i] ==> Longest Increasing subsequence ending with arr[i]``    ``lds[i] ==> Longest decreasing subsequence starting with arr[i]``*/``int` `lbs( ``int` `arr[], ``int` `n )``{``   ``int` `i, j;`` ` `   ``/* Allocate memory for LIS[] and initialize LIS values as 1 for``      ``all indexes */``   ``int` `*lis = ``new` `int``[n];``   ``for` `(i = 0; i < n; i++)``      ``lis[i] = 1;`` ` `   ``/* Compute LIS values from left to right */``   ``for` `(i = 1; i < n; i++)``      ``for` `(j = 0; j < i; j++)``         ``if` `(arr[i] > arr[j] && lis[i] < lis[j] + 1)``            ``lis[i] = lis[j] + 1;`` ` `   ``/* Allocate memory for lds and initialize LDS values for``      ``all indexes */``   ``int` `*lds = ``new` `int` `[n];``   ``for` `(i = 0; i < n; i++)``      ``lds[i] = 1;`` ` `   ``/* Compute LDS values from right to left */``   ``for` `(i = n-2; i >= 0; i--)``      ``for` `(j = n-1; j > i; j--)``         ``if` `(arr[i] > arr[j] && lds[i] < lds[j] + 1)``            ``lds[i] = lds[j] + 1;`` ` ` ` `   ``/* Return the maximum value of lis[i] + lds[i] - 1*/``   ``int` `max = lis + lds - 1;``   ``for` `(i = 1; i < n; i++)``     ``if` `(lis[i] + lds[i] - 1 > max)``         ``max = lis[i] + lds[i] - 1;``   ``return` `max;``}`` ` `/* Driver program to test above function */``int` `main()``{``  ``int` `arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,``              ``13, 3, 11, 7, 15};``  ``int` `n = ``sizeof``(arr)/``sizeof``(arr);``  ``printf``(``"Length of LBS is %d\n"``, lbs( arr, n ) );``  ``return` `0;``}`

## Java

 `/* Dynamic Programming implementation in Java for longest bitonic``   ``subsequence problem */``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;`` ` `class` `LBS``{``    ``/* lbs() returns the length of the Longest Bitonic Subsequence in``    ``arr[] of size n. The function mainly creates two temporary arrays``    ``lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.`` ` `    ``lis[i] ==> Longest Increasing subsequence ending with arr[i]``    ``lds[i] ==> Longest decreasing subsequence starting with arr[i]``    ``*/``    ``static` `int` `lbs( ``int` `arr[], ``int` `n )``    ``{``        ``int` `i, j;`` ` `        ``/* Allocate memory for LIS[] and initialize LIS values as 1 for``            ``all indexes */``        ``int``[] lis = ``new` `int``[n];``        ``for` `(i = ``0``; i < n; i++)``            ``lis[i] = ``1``;`` ` `        ``/* Compute LIS values from left to right */``        ``for` `(i = ``1``; i < n; i++)``            ``for` `(j = ``0``; j < i; j++)``                ``if` `(arr[i] > arr[j] && lis[i] < lis[j] + ``1``)``                    ``lis[i] = lis[j] + ``1``;`` ` `        ``/* Allocate memory for lds and initialize LDS values for``            ``all indexes */``        ``int``[] lds = ``new` `int` `[n];``        ``for` `(i = ``0``; i < n; i++)``            ``lds[i] = ``1``;`` ` `        ``/* Compute LDS values from right to left */``        ``for` `(i = n-``2``; i >= ``0``; i--)``            ``for` `(j = n-``1``; j > i; j--)``                ``if` `(arr[i] > arr[j] && lds[i] < lds[j] + ``1``)``                    ``lds[i] = lds[j] + ``1``;`` ` ` ` `        ``/* Return the maximum value of lis[i] + lds[i] - 1*/``        ``int` `max = lis[``0``] + lds[``0``] - ``1``;``        ``for` `(i = ``1``; i < n; i++)``            ``if` `(lis[i] + lds[i] - ``1` `> max)``                ``max = lis[i] + lds[i] - ``1``;`` ` `        ``return` `max;``    ``}`` ` `    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[] = {``0``, ``8``, ``4``, ``12``, ``2``, ``10``, ``6``, ``14``, ``1``, ``9``, ``5``,``                    ``13``, ``3``, ``11``, ``7``, ``15``};``        ``int` `n = arr.length;``        ``System.out.println(``"Length of LBS is "``+ lbs( arr, n ));``    ``}``}`

## Python3

 `# Dynamic Programming implementation of longest bitonic subsequence problem``"""``lbs() returns the length of the Longest Bitonic Subsequence in``arr[] of size n. The function mainly creates two temporary arrays``lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.`` ` `lis[i] ==> Longest Increasing subsequence ending with arr[i]``lds[i] ==> Longest decreasing subsequence starting with arr[i]``"""`` ` `def` `lbs(arr):``    ``n ``=` `len``(arr)`` ` ` ` `    ``# allocate memory for LIS[] and initialize LIS values as 1``    ``# for all indexes``    ``lis ``=` `[``1` `for` `i ``in` `range``(n``+``1``)]`` ` `    ``# Compute LIS values from left to right``    ``for` `i ``in` `range``(``1` `, n):``        ``for` `j ``in` `range``(``0` `, i):``            ``if` `((arr[i] > arr[j]) ``and` `(lis[i] < lis[j] ``+``1``)):``                ``lis[i] ``=` `lis[j] ``+` `1`` ` `    ``# allocate memory for LDS and initialize LDS values for``    ``# all indexes``    ``lds ``=` `[``1` `for` `i ``in` `range``(n``+``1``)]``     ` `    ``# Compute LDS values from right to left``    ``for` `i ``in` `reversed``(``range``(n``-``1``)): ``#loop from n-2 downto 0``        ``for` `j ``in` `reversed``(``range``(i``-``1` `,n)): ``#loop from n-1 downto i-1``            ``if``(arr[i] > arr[j] ``and` `lds[i] < lds[j] ``+` `1``):``                ``lds[i] ``=` `lds[j] ``+` `1` ` ` ` ` `    ``# Return the maximum value of (lis[i] + lds[i] - 1)``    ``maximum ``=` `lis[``0``] ``+` `lds[``0``] ``-` `1``    ``for` `i ``in` `range``(``1` `, n):``        ``maximum ``=` `max``((lis[i] ``+` `lds[i]``-``1``), maximum)``     ` `    ``return` `maximum`` ` `# Driver program to test the above function``arr ``=`  `[``0` `, ``8` `, ``4``, ``12``, ``2``, ``10` `, ``6` `, ``14` `, ``1` `, ``9` `, ``5` `, ``13``,``        ``3``, ``11` `, ``7` `, ``15``]``print` `(``"Length of LBS is"``,lbs(arr))`` ` `# This code is contributed by Nikhil Kumar Singh(nickzuck_007)`

## C#

 `/* Dynamic Programming implementation in ``   ``C# for longest bitonic subsequence problem */``using` `System;`` ` `class` `LBS {``     ` `    ``/* lbs() returns the length of the Longest Bitonic Subsequence in``    ``arr[] of size n. The function mainly creates two temporary arrays``    ``lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.`` ` `    ``lis[i] ==> Longest Increasing subsequence ending with arr[i]``    ``lds[i] ==> Longest decreasing subsequence starting with arr[i]``    ``*/``    ``static` `int` `lbs(``int``[] arr, ``int` `n)``    ``{``        ``int` `i, j;`` ` `        ``/* Allocate memory for LIS[] and initialize ``           ``LIS values as 1 for all indexes */``        ``int``[] lis = ``new` `int``[n];``        ``for` `(i = 0; i < n; i++)``            ``lis[i] = 1;`` ` `        ``/* Compute LIS values from left to right */``        ``for` `(i = 1; i < n; i++)``            ``for` `(j = 0; j < i; j++)``                ``if` `(arr[i] > arr[j] && lis[i] < lis[j] + 1)``                    ``lis[i] = lis[j] + 1;`` ` `        ``/* Allocate memory for lds and initialize LDS values for``            ``all indexes */``        ``int``[] lds = ``new` `int``[n];``        ``for` `(i = 0; i < n; i++)``            ``lds[i] = 1;`` ` `        ``/* Compute LDS values from right to left */``        ``for` `(i = n - 2; i >= 0; i--)``            ``for` `(j = n - 1; j > i; j--)``                ``if` `(arr[i] > arr[j] && lds[i] < lds[j] + 1)``                    ``lds[i] = lds[j] + 1;`` ` `        ``/* Return the maximum value of lis[i] + lds[i] - 1*/``        ``int` `max = lis + lds - 1;``        ``for` `(i = 1; i < n; i++)``            ``if` `(lis[i] + lds[i] - 1 > max)``                ``max = lis[i] + lds[i] - 1;`` ` `        ``return` `max;``    ``}``     ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,``                                      ``13, 3, 11, 7, 15 };``        ``int` `n = arr.Length;``        ``Console.WriteLine(``"Length of LBS is "` `+ lbs(arr, n));``    ``}``}`` ` `// This code is contributed by vt_m.`

## PHP

 ` Longest Increasing subsequence``              ``ending with arr[i]``   ``lds[i] ==> Longest decreasing subsequence ``              ``starting with arr[i]``*/``function` `lbs(&``\$arr``, ``\$n``)``{`` ` `    ``/* Allocate memory for LIS[] and initialize ``       ``LIS values as 1 for all indexes */``    ``\$lis` `= ``array_fill``(0, ``\$n``, NULL);``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)``        ``\$lis``[``\$i``] = 1;``     ` `    ``/* Compute LIS values from left to right */``    ``for` `(``\$i` `= 1; ``\$i` `< ``\$n``; ``\$i``++)``        ``for` `(``\$j` `= 0; ``\$j` `< ``\$i``; ``\$j``++)``            ``if` `(``\$arr``[``\$i``] > ``\$arr``[``\$j``] && ``                ``\$lis``[``\$i``] < ``\$lis``[``\$j``] + 1)``                ``\$lis``[``\$i``] = ``\$lis``[``\$j``] + 1;``     ` `    ``/* Allocate memory for lds and initialize ``       ``LDS values for all indexes */``    ``\$lds` `= ``array_fill``(0, ``\$n``, NULL);``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)``        ``\$lds``[``\$i``] = 1;``     ` `    ``/* Compute LDS values from right to left */``    ``for` `(``\$i` `= ``\$n` `- 2; ``\$i` `>= 0; ``\$i``--)``        ``for` `(``\$j` `= ``\$n` `- 1; ``\$j` `> ``\$i``; ``\$j``--)``            ``if` `(``\$arr``[``\$i``] > ``\$arr``[``\$j``] && ``                ``\$lds``[``\$i``] < ``\$lds``[``\$j``] + 1)``                ``\$lds``[``\$i``] = ``\$lds``[``\$j``] + 1;``     ` `    ``/* Return the maximum value of ``       ``lis[i] + lds[i] - 1*/``    ``\$max` `= ``\$lis`` + ``\$lds`` - 1;``    ``for` `(``\$i` `= 1; ``\$i` `< ``\$n``; ``\$i``++)``        ``if` `(``\$lis``[``\$i``] + ``\$lds``[``\$i``] - 1 > ``\$max``)``            ``\$max` `= ``\$lis``[``\$i``] + ``\$lds``[``\$i``] - 1;``    ``return` `\$max``;``}`` ` `// Driver Code``\$arr` `= ``array``(0, 8, 4, 12, 2, 10, 6, 14, ``             ``1, 9, 5, 13, 3, 11, 7, 15);``\$n` `= sizeof(``\$arr``);``echo` `"Length of LBS is "` `. lbs( ``\$arr``, ``\$n` `);`` ` `// This code is contributed by ita_c``?>`

## Javascript

 ``

Output:

` Length of LBS is 7`

Time Complexity: O(n^2)
Auxiliary Space: O(n)