Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Lexicographically smallest permutation of a string with given subsequences

  • Difficulty Level : Expert
  • Last Updated : 20 Jul, 2021

Given a string consisting only of two lowercase characters x  and y  and two numbers p  and q  . The task is to print the lexicographically smallest permutation of the given string such that the count of subsequences of xy  is p  and of yx  is q  . If no such string exists, print “Impossible” (without quotes).
Examples: 
 

Input: str = "yxxyx", p = 3, q = 3 
Output: xyxyx

Input: str = "yxxy", p = 3, q = 2
Output: Impossible

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: First of all, by induction it can prove that the product of count of ‘x’ and count of ‘y’ should be equal to the sum of the count of a subsequence of ‘xy’ and ‘yx’ for any given string. If this does not hold then the answer is ‘Impossible’ else answer always exist.
Now, sort the given string so the count of a subsequence of ‘yx’ becomes zero. Let nx be the count of ‘x’ and ny be count of ‘y’. let a and b be the count of subsequence ‘xy’ and ‘yx’ respectively, then a = nx*ny and b = 0. Then, from beginning of the string find the ‘x’ which has next ‘y’ to it and swap both untill you reach end of the string. In each swap a is decremented by 1 and b is incremented by 1. Repeat this until the count of a subsequence of ‘yx’ is achieved i:e a becomes p and b becomes q.
Below is the implementation of the above approach: 
 

C++




// CPP program to find lexicographically smallest
// string such that count of subsequence 'xy' and
// 'yx' is p and q respectively.
#include <bits/stdc++.h>
using namespace std;
 
// function to check if answer exits
int nx = 0, ny = 0;
 
bool check(string s, int p, int q)
{
    // count total 'x' and 'y' in string
    for (int i = 0; i < s.length(); ++i) {
        if (s[i] == 'x')
            nx++;
        else
            ny++;
    }
 
    // condition to check existence of answer
    if (nx * ny != p + q)
        return 1;
    else
        return 0;
}
 
// function to find lexicographically smallest string
string smallestPermutation(string s, int p, int q)
{
    // check if answer exist or not
    if (check(s, p, q) == 1) {
        return "Impossible";
    }
 
    sort(s.begin(), s.end());
    int a = nx * ny, b = 0, i, j;
 
    // check if count of 'xy' and 'yx' becomes
    // equal to p and q respectively.
    if (a == p && b == q) {
        return s;
    }
 
    // Repeat until answer is found.
    while (1) {
        // Find index of 'x' to swap with 'y'.
        for (i = 0; i < s.length() - 1; ++i) {
            if (s[i] == 'x' && s[i + 1] == 'y')
                break;
        }
 
        for (j = i; j < s.length() - 1; j++) {
            if (s[j] == 'x' && s[j + 1] == 'y') {
                swap(s[j], s[j + 1]);
                a--; // 'xy' decrement by 1
                b++; // 'yx' increment by 1
 
                // check if count of 'xy' and 'yx' becomes
                // equal to p and q respectively.
                if (a == p && b == q) {
                    return s;
                }
            }
        }
    }
}
 
// Driver code
int main()
{
    string s = "yxxyx";
    int p = 3, q = 3;
 
    cout<< smallestPermutation(s, p, q);
     
    return 0;
}

Java




// Java program to find lexicographically
// smallest string such that count of
// subsequence 'xy' and 'yx' is p and
// q respectively.
import java.util.*;
 
class GFG
{
static int nx = 0, ny = 0;
     
static boolean check(String s,
                     int p, int q)
{
    // count total 'x' and 'y' in string
    for (int i = 0; i < s.length(); ++i)
    {
        if (s.charAt(i) == 'x')
            nx++;
        else
            ny++;
    }
 
    // condition to check
    // existence of answer
    if ((nx * ny) != (p + q))
        return true;
    else
        return false;
}
 
public static String smallestPermutation(String s,
                                         int p, int q)
{
    if (check(s, p, q) == true)
    {
        return "Impossible";
    }
         
    char tempArray[] = s.toCharArray();
    Arrays.sort(tempArray);
     
    String str = new String(tempArray);
    int a = nx * ny, b = 0, i = 0, j = 0;
         
    if (a == p && b == q)
    {
        return str;
    }
     
    while (1 > 0)
    {
         
    // Find index of 'x' to swap with 'y'.
    for (i = 0; i < str.length() - 1; ++i)
    {
        if (str.charAt(i) == 'x' &&
            str.charAt(i + 1) == 'y')
            break;
    }
 
    for (j = i; j < str.length() - 1; j++)
    {
        if (str.charAt(j) == 'x' &&
            str.charAt(j + 1) == 'y')
        {
        StringBuilder sb = new StringBuilder(str);
        sb.setCharAt(j, str.charAt(j + 1));
        sb.setCharAt(j + 1, str.charAt(j));
        str = sb.toString();
        /* char ch[] = str.toCharArray();
            char temp = ch[j+1];
            ch[j+1] = ch[j];
            ch[j] = temp;*/
             
            a--; // 'xy' decrement by 1
            b++; // 'yx' increment by 1
 
            // check if count of 'xy' and
            // 'yx' becomes equal to p
            // and q respectively.
            if (a == p && b == q)
            {
                return str;
            }
        }
    }
}
}
 
// Driver Code
public static void main (String[] args)
{
    String s = "yxxyx";
    int p = 3, q = 3;
     
    System.out.print(smallestPermutation(s, p, q));
}
}
 
// This code is contributed by Kirti_Mangal

Python3




# Python3 program to find lexicographically
# smallest string such that count of subsequence
# 'xy' and 'yx' is p and q respectively.
 
# Function to check if answer exits
def check(s, p, q):
     
    global nx
    global ny
     
    # count total 'x' and 'y' in string
    for i in range(0, len(s)):
        if s[i] == 'x':
            nx += 1
        else:
            ny += 1
 
    # condition to check existence of answer
    if nx * ny != p + q:
        return 1
    else:
        return 0
 
# Function to find lexicographically
# smallest string
def smallestPermutation(s, p, q):
 
    # check if answer exist or not
    if check(s, p, q) == 1:
        return "Impossible"
 
    s = sorted(s)
    a, b, i = nx * ny, 0, 0
 
    # check if count of 'xy' and 'yx' becomes
    # equal to p and q respectively.
    if a == p and b == q:
        return '' . join(s)
 
    # Repeat until answer is found.
    while True:
         
        # Find index of 'x' to swap with 'y'.
        for i in range(0, len(s) - 1):
            if s[i] == 'x' and s[i + 1] == 'y':
                break
 
        for j in range(i, len(s) - 1):
            if s[j] == 'x' and s[j + 1] == 'y':
                 
                s[j], s[j + 1] = s[j + 1], s[j]
                a -= 1 # 'xy' decrement by 1
                b += 1 # 'yx' increment by 1
 
                # check if count of 'xy' and 'yx' becomes
                # equal to p and q respectively.
                if a == p and b == q:
                    return '' . join(s)
 
# Driver code
if __name__ == "__main__":
     
    nx, ny = 0, 0
    s = "yxxyx"
    p, q = 3, 3
 
    print(smallestPermutation(s, p, q))
     
# This code is contributed by Rituraj Jain

C#




// C# program to find lexicographically
// smallest string such that count of
// subsequence 'xy' and 'yx' is p and
// q respectively.
using System;
using System.Text;
 
class GFG
{
     
static int nx = 0, ny = 0;
     
static Boolean check(String s,
                    int p, int q)
{
    // count total 'x' and 'y' in string
    for (int i = 0; i < s.Length; ++i)
    {
        if (s[i] == 'x')
            nx++;
        else
            ny++;
    }
 
    // condition to check
    // existence of answer
    if ((nx * ny) != (p + q))
        return true;
    else
        return false;
}
 
public static String smallestPermutation(String s,
                                        int p, int q)
{
    if (check(s, p, q) == true)
    {
        return "Impossible";
    }
         
    char []tempArray = s.ToCharArray();
    Array.Sort(tempArray);
     
    String str = new String(tempArray);
    int a = nx * ny, b = 0, i = 0, j = 0;
         
    if (a == p && b == q)
    {
        return str;
    }
     
    while (1 > 0)
    {
         
    // Find index of 'x' to swap with 'y'.
    for (i = 0; i < str.Length - 1; ++i)
    {
        if (str[i] == 'x' &&
            str[i + 1] == 'y')
            break;
    }
 
    for (j = i; j < str.Length - 1; j++)
    {
        if (str[j] == 'x' &&
            str[j + 1] == 'y')
        {
            StringBuilder sb = new StringBuilder(str);
            sb.Remove(j,1);
            sb.Insert(j, str[j + 1]);
            sb.Remove(j+1,1);
            sb.Insert(j + 1, str[j]);
            str = sb.ToString();
            /* char ch[] = str.toCharArray();
                char temp = ch[j+1];
                ch[j+1] = ch[j];
                ch[j] = temp;*/
             
            a--; // 'xy' decrement by 1
            b++; // 'yx' increment by 1
 
            // check if count of 'xy' and
            // 'yx' becomes equal to p
            // and q respectively.
            if (a == p && b == q)
            {
                return str;
            }
        }
    }
}
}
 
// Driver Code
public static void Main (String[] args)
{
    String s = "yxxyx";
    int p = 3, q = 3;
     
    Console.WriteLine(smallestPermutation(s, p, q));
}
}
 
// This code has been contributed by 29AjayKumar

Javascript




<script>
// Javascript program to find lexicographically
// smallest string such that count of
// subsequence 'xy' and 'yx' is p and
// q respectively.
 
let nx = 0, ny = 0;
function check(s, p, q)
{
    // count total 'x' and 'y' in string
    for (let i = 0; i < s.length; ++i)
    {
        if (s[i] == 'x')
            nx++;
        else
            ny++;
    }
   
    // condition to check
    // existence of answer
    if ((nx * ny) != (p + q))
        return true;
    else
        return false;
}
 
function smallestPermutation(s,p,q)
{
    if (check(s, p, q) == true)
    {
        return "Impossible";
    }
           
    let tempArray = s.split("");
    (tempArray).sort();
       
    let str = (tempArray).join("");
    let a = nx * ny, b = 0, i = 0, j = 0;
           
    if (a == p && b == q)
    {
        return str;
    }
       
    while (1 > 0)
    {
           
    // Find index of 'x' to swap with 'y'.
    for (i = 0; i < str.length - 1; ++i)
    {
        if (str[i] == 'x' &&
            str[i+1] == 'y')
            break;
    }
   
    for (j = i; j < str.length - 1; j++)
    {
        if (str[j] == 'x' &&
            str[j+1] == 'y')
        {
        let sb = (str).split("");
        sb[j] = str[j+1];
        sb[j + 1] = str[j];
        str = sb.join("");
        /* char ch[] = str.toCharArray();
            char temp = ch[j+1];
            ch[j+1] = ch[j];
            ch[j] = temp;*/
               
            a--; // 'xy' decrement by 1
            b++; // 'yx' increment by 1
   
            // check if count of 'xy' and
            // 'yx' becomes equal to p
            // and q respectively.
            if (a == p && b == q)
            {
                return str;
            }
        }
    }
}
}
 
// Driver Code
let s = "yxxyx";
let p = 3;
let q = 3;
 
document.write(smallestPermutation(s, p, q));
 
// This code is contributed by patel2127
</script>
Output: 
xyxyx

 

Time Complexity: O(N2)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!