Skip to content
Related Articles

Related Articles

Improve Article

Lexicographically largest sub-sequence of the given string

  • Difficulty Level : Easy
  • Last Updated : 07 Jun, 2021

Given a string str containing lowercase characters, the task is to find the lexicographically largest sub-sequence of str.
Examples: 
 

Input: str = “abc” 
Output:
All possible sub-sequences are “a”, “ab”, “ac”, “b”, “bc” and “c” 
and “c” is the largest among them (lexicographically)
Input: str = “geeksforgeeks” 
Output: ss 
 

 

Approach: Let mx be the lexicographically largest character in the string. Since we want the lexicographically largest sub-sequence we should include all occurrences of mx. Now after all the occurrences have been used, the same process can be repeated for the remaining string (i.e. sub-string after the last occurrence of mx) and so on until the there are no more characters left.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the lexicographically
// largest sub-sequence of s
string getSubSeq(string s, int n)
{
    string res = "";
    int cr = 0;
    while (cr < n) {
 
        // Get the max character from the string
        char mx = s[cr];
        for (int i = cr + 1; i < n; i++)
            mx = max(mx, s[i]);
        int lst = cr;
 
        // Use all the occurrences of the
        // current maximum character
        for (int i = cr; i < n; i++)
            if (s[i] == mx) {
                res += s[i];
                lst = i;
            }
 
        // Repeat the steps for the remaining string
        cr = lst + 1;
    }
    return res;
}
 
// Driver code
int main()
{
    string s = "geeksforgeeks";
    int n = s.length();
    cout << getSubSeq(s, n);
}

Java




// Java implementation of the approach
class GFG
{
 
    // Function to return the lexicographically
    // largest sub-sequence of s
    static String getSubSeq(String s, int n)
    {
        String res = "";
        int cr = 0;
        while (cr < n)
        {
 
            // Get the max character from the String
            char mx = s.charAt(cr);
            for (int i = cr + 1; i < n; i++)
            {
                mx = (char) Math.max(mx, s.charAt(i));
            }
            int lst = cr;
 
            // Use all the occurrences of the
            // current maximum character
            for (int i = cr; i < n; i++)
            {
                if (s.charAt(i) == mx)
                {
                    res += s.charAt(i);
                    lst = i;
                }
            }
 
            // Repeat the steps for
            // the remaining String
            cr = lst + 1;
        }
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = "geeksforgeeks";
        int n = s.length();
        System.out.println(getSubSeq(s, n));
    }
}
 
// This code is contributed by Rajput-Ji

Python3




# Python 3 implementation of the approach
 
# Function to return the lexicographically
# largest sub-sequence of s
def getSubSeq(s, n):
    res = ""
    cr = 0
    while (cr < n):
         
        # Get the max character from
        # the string
        mx = s[cr]
        for i in range(cr + 1, n):
            mx = max(mx, s[i])
        lst = cr
 
        # Use all the occurrences of the
        # current maximum character
        for i in range(cr,n):
            if (s[i] == mx):
                res += s[i]
                lst = i
 
        # Repeat the steps for the
        # remaining string
        cr = lst + 1
     
    return res
 
# Driver code
if __name__ == '__main__':
    s = "geeksforgeeks"
    n = len(s)
    print(getSubSeq(s, n))
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the lexicographically
    // largest sub-sequence of s
    static String getSubSeq(String s, int n)
    {
        String res = "";
        int cr = 0;
        while (cr < n)
        {
 
            // Get the max character from
            // the String
            char mx = s[cr];
            for (int i = cr + 1; i < n; i++)
            {
                mx = (char) Math.Max(mx, s[i]);
            }
            int lst = cr;
 
            // Use all the occurrences of the
            // current maximum character
            for (int i = cr; i < n; i++)
            {
                if (s[i] == mx)
                {
                    res += s[i];
                    lst = i;
                }
            }
 
            // Repeat the steps for
            // the remaining String
            cr = lst + 1;
        }
        return res;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        String s = "geeksforgeeks";
        int n = s.Length;
        Console.WriteLine(getSubSeq(s, n));
    }
}
 
// This code is contributed by 29AjayKumar

PHP




<?php
// PHP implementation of the approach
 
// Function to return the lexicographically
// largest sub-sequence of s
function getSubSeq($s, $n)
{
    $res = "";
    $cr = 0;
    while ($cr < $n)
    {
 
        // Get the max character from the string
        $mx = $s[$cr];
        for ($i = $cr + 1; $i < $n; $i++)
            $mx = max($mx, $s[$i]);
        $lst = $cr;
 
        // Use all the occurrences of the
        // current maximum character
        for ($i = $cr; $i < $n; $i++)
            if ($s[$i] == $mx)
            {
                $res .= $s[$i];
                $lst = $i;
            }
 
        // Repeat the steps for the
        // remaining string
        $cr = $lst + 1;
    }
    return $res;
}
 
// Driver code
$s = "geeksforgeeks";
$n = strlen($s);
echo getSubSeq($s, $n);
 
// This code is contributed by
// Akanksha Rai
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the lexicographically
// largest sub-sequence of s
function getSubSeq(s, n)
{
    var res = "";
    var cr = 0;
    while (cr < n) {
 
        // Get the max character from the string
        var mx = s[cr].charCodeAt(0);
        for (var i = cr + 1; i < n; i++)
            mx = Math.max(mx, s[i].charCodeAt(0));
        var lst = cr;
 
        // Use all the occurrences of the
        // current maximum character
        for (var i = cr; i < n; i++)
            if (s[i].charCodeAt(0) == mx) {
                res += s[i];
                lst = i;
            }
 
        // Repeat the steps for the remaining string
        cr = lst + 1;
    }
    return res;
}
 
// Driver code
var s = "geeksforgeeks";
var n = s.length;
document.write( getSubSeq(s, n));
 
// This code is contributed by famously.
</script>
Output: 



ss

 

Time Complexity: O(N) where N is the length of the string.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :