Lexicographically largest string possible by reversing substrings having even number of 1s
Given a binary string S, the task is to convert the given string S to its lexicographic maximum form by reversing substrings having an even number of 1s.
Examples:
Input: S = “10101”
Output: 11010
Explanation:
Reversing the substring {S[0], …, S[2]} modifies S to “10101”.
Reversing the substring {S[1], …, S[4]} modifies S to “11010”.
Now, any other substring cannot be chosen as each will either have odd number of 1s or will be lexicographically smaller than the previous string. Thus, 11010 is the lexicographically largest string that can be performed.Input: S = “0101”
Output: 1010
Approach: The idea is to start from the first index and traverse the string till the total number of 1s in the string becomes even. As soon as an index is found where there is exactly an even number of 1s, reverse the string from the starting index to the end index. Repeat this process for every index to get the lexicographically largest string.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the lexicographically // maximum string by reversing substrings // having even numbers of 1s void lexicographicallyMax(string s) { // Store size of string int n = s.size(); // Traverse the string for ( int i = 0; i < n; i++) { // Count the number of 1s int count = 0; // Stores the starting index int beg = i; // Stores the end index int end = i; // Increment count, when 1 // is encountered if (s[i] == '1' ) count++; // Traverse the remaining string for ( int j = i + 1; j < n; j++) { if (s[j] == '1' ) count++; if (count % 2 == 0 && count != 0) { end = j; break ; } } // Reverse the string from // starting and end index reverse(s.begin() + beg, s.begin() + end + 1); } // Printing the string cout << s << "\n" ; } // Driver Code int main() { string S = "0101" ; lexicographicallyMax(S); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the lexicographically // maximum string by reversing substrings // having even numbers of 1s static void lexicographicallyMax(String s) { // Store size of string int n = s.length(); // Traverse the string for ( int i = 0 ; i < n; i++) { // Count the number of 1s int count = 0 ; // Stores the starting index int beg = i; // Stores the end index int end = i; // Increment count, when 1 // is encountered if (s.charAt(i) == '1' ) count++; // Traverse the remaining string for ( int j = i + 1 ; j < n; j++) { if (s.charAt(j) == '1' ) count++; if (count % 2 == 0 && count != 0 ) { end = j; break ; } } // Reverse the string from // starting and end index s = reverse(s, beg, end + 1 ); } // Printing the string System.out.println(s); } static String reverse(String s, int beg, int end) { StringBuilder x = new StringBuilder( "" ); for ( int i = 0 ; i < beg; i++) x.append(s.charAt(i)); for ( int i = end - 1 ; i >= beg; i--) x.append(s.charAt(i)); for ( int i = end; i < s.length(); i++) x.append(s.charAt(i)); return x.toString(); } // Driver Code public static void main(String args[]) { String S = "0101" ; lexicographicallyMax(S); } } // This code is contributed by jyoti369 |
Python3
# Python3 program for the above approach # Function to find the lexicographically # maximum string by reversing substrings # having even numbers of 1s def lexicographicallyMax(s): # Store size of string n = len (s) # Traverse the string for i in range (n): # Count the number of 1s count = 0 # Stores the starting index beg = i # Stores the end index end = i # Increment count, when 1 # is encountered if (s[i] = = '1' ): count + = 1 # Traverse the remaining string for j in range (i + 1 , n): if (s[j] = = '1' ): count + = 1 if (count % 2 = = 0 and count ! = 0 ): end = j break # temp is for Reverse the string from # starting and end index temp = s[beg : end + 1 ] temp = temp[:: - 1 ] s = s[ 0 : beg] + temp + s[end + 1 :] # Printing the string print (s) # Driver Code S = "0101" lexicographicallyMax(S) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program for the above approach using System; using System.Text; class GFG { // Function to find the lexicographically // maximum string by reversing substrings // having even numbers of 1s static void lexicographicallyMax(String s) { // Store size of string int n = s.Length; // Traverse the string for ( int i = 0; i < n; i++) { // Count the number of 1s int count = 0; // Stores the starting index int beg = i; // Stores the end index int end = i; // Increment count, when 1 // is encountered if (s[i] == '1' ) count++; // Traverse the remaining string for ( int j = i + 1; j < n; j++) { if (s[j] == '1' ) count++; if (count % 2 == 0 && count != 0) { end = j; break ; } } // Reverse the string from // starting and end index s = reverse(s, beg, end + 1); } // Printing the string Console.WriteLine(s); } static String reverse(String s, int beg, int end) { StringBuilder x = new StringBuilder( "" ); for ( int i = 0; i < beg; i++) x.Append(s[i]); for ( int i = end - 1; i >= beg; i--) x.Append(s[i]); for ( int i = end; i < s.Length; i++) x.Append(s[i]); return x.ToString(); } // Driver Code public static void Main(String []args) { String S = "0101" ; lexicographicallyMax(S); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program for the above approach // Function to find the lexicographically // maximum string by reversing substrings // having even numbers of 1s function lexicographicallyMax(s) { // Store size of string var n = s.length; // Traverse the string for ( var i = 0; i < n; i++) { // Count the number of 1s var count = 0; // Stores the starting index var beg = i; // Stores the end index var end = i; // Increment count, when 1 // is encountered if (s[i] == '1' ) count++; // Traverse the remaining string for ( var j = i + 1; j < n; j++) { if (s[j] == '1' ) count++; if (count % 2 == 0 && count != 0) { end = j; break ; } } // Reverse the string from // starting and end index for ( var i = beg; i<parseInt((end+1)/2);i++) { let temp = s[i] ; s[i] = s[end - i+1] ; s[end -i+1 ] = temp; } } // Printing the string document.write( s.join( "" ) + "<br>" ); } // Driver Code var S = "0101" .split( '' ); lexicographicallyMax(S); </script> |
1010
Time Complexity: O(N2)
Auxiliary Space: O(1)
Please Login to comment...