Open In App
Related Articles

Length of the longest substring that do not contain any palindrome

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a string of lowercase, find the length of the longest substring that does not contain any palindrome as a substring.

Examples:

Input : str = "daiict" 
Output : 3
dai, ict are longest substring that do not contain any 
palindrome as substring

Input : str = "a"
Output : 0
a is itself a palindrome 

The idea is to observe that if any character forms a palindrome, it can not be included in any substring. So, in that case, the required substring will be picked from before or after that character which forms a palindrome. 
Therefore, a simple solution is to traverse the string and, for each character, check whether it forms a palindrome of length 2 or 3 with its adjacent characters. If it does not, then increase the length of the substring, otherwise re-initialize the length of the substring to zero. Using this approach, find the length of the maximum substring.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the longest
// substring
int lenoflongestnonpalindrome(string s)
{
    // initializing the variables
    int max1 = 1, len = 0;
 
    for (int i = 0; i < s.length() - 1; i++) {
        // checking palindrome of size 2
        // example: aa
        if (s[i] == s[i + 1])
            len = 0;
        // checking palindrome of size 3
        // example: aba
        else if (s[i + 1] == s[i - 1] && i > 0)
            len = 1;
        else // incrementing length of substring
            len++;
        max1 = max(max1, len + 1); // finding maximum
    }
 
    // if there exists single character then
    // it is always palindrome
    if (max1 == 1)
        return 0;
    else
        return max1;
}
 
// Driver Code
int main()
{
    string s = "synapse";
    cout << lenoflongestnonpalindrome(s) << "\n";
    return 0;
}


Java




// Java implementation of the above approach
import java.util.Arrays;
import java.lang.Math;
 
class GFG {
 
    // Function to find the length of the longest
    // substring
    public static int lenoflongestnonpalindrome(String s)
    {
        // initializing the variables
        int max1 = 1, len = 0;
        char[] new_str = s.toCharArray();
 
        for (int i = 0; i < new_str.length - 1; i++) {
            // checking palindrome of size 2
            // example: aa
            if (new_str[i] == new_str[i + 1])
                len = 0;
            // checking palindrome of size 3
            // example: aba
            else if (i > 0 && (new_str[i + 1] == new_str[i - 1]))
                len = 1;
            else // incrementing length of substring
                len++;
            max1 = Math.max(max1, len + 1); // finding maximum
        }
 
        // if there exits single character then
        // it is always palindrome
        if (max1 == 1)
            return 0;
        else
            return max1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String s = "synapse";
        System.out.println(lenoflongestnonpalindrome(s));
    }
}
 
// This code is contributed by princiraj1992


Python3




# Python3 implementation of the above approach
 
# Function to find the length
# of the longest substring
def lenoflongestnonpalindrome(s):
 
    # initializing the variables
    max1, length = 1, 0
 
    for i in range(0, len(s) - 1):
         
        # checking palindrome of
        # size 2 example: aa
        if s[i] == s[i + 1]:
            length = 0
             
        # checking palindrome of
        # size 3 example: aba
        elif s[i + 1] == s[i - 1] and i > 0:
            length = 1
        else: # incrementing length of substring
            length += 1
        max1 = max(max1, length + 1) # finding maximum
 
    # If there exits single character
    # then it is always palindrome
    if max1 == 1:
        return 0
    else:
        return max1
 
# Driver Code
if __name__ == "__main__":
 
    s = "synapse"
    print(lenoflongestnonpalindrome(s))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the above approach
using System;
     
class GFG
{
 
    // Function to find the length of the longest
    // substring
    public static int lenoflongestnonpalindrome(String s)
    {
        // initializing the variables
        int max1 = 1, len = 0;
        char[] new_str = s.ToCharArray();
 
        for (int i = 0; i < new_str.Length - 1; i++)
        {
            // checking palindrome of size 2
            // example: aa
            if (new_str[i] == new_str[i + 1])
                len = 0;
                 
            // checking palindrome of size 3
            // example: aba
            else if (i > 0 && (new_str[i + 1] == new_str[i - 1]))
                len = 1;
            else // incrementing length of substring
                len++;
            max1 = Math.Max(max1, len + 1); // finding maximum
        }
 
        // if there exits single character then
        // it is always palindrome
        if (max1 == 1)
            return 0;
        else
            return max1;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String s = "synapse";
        Console.WriteLine(lenoflongestnonpalindrome(s));
    }
}
 
// This code has been contributed by 29AjayKumar


PHP




<?php
// PHP implementation of the above approach
 
// Function to find the length of the longest
// substring
function lenoflongestnonpalindrome($s)
{
    // initializing the variables
    $max1 = 1; $len = 0;
 
    for ($i = 0; $i < strlen($s) - 1; $i++)
    {
        // checking palindrome of size 2
        // example: aa
        if ($s[$i] == $s[$i + 1])
            $len = 0;
             
        // checking palindrome of size 3
        // example: aba
        else if ($s[$i + 1] == $s[$i - 1] && $i > 0)
            $len = 1;
        else // incrementing length of substring
            $len++;
        $max1 = max($max1, $len + 1); // finding maximum
    }
 
    // if there exits single character then
    // it is always palindrome
    if ($max1 == 1)
        return 0;
    else
        return $max1;
}
 
// Driver Code
$s = "synapse";
echo lenoflongestnonpalindrome($s), "\n";
 
// This code is contributed by AnkitRai01
 
?>


Javascript




<script>
 
// JavaScript implementation of the above approach
 
// Function to find the length of the longest
// substring
function lenoflongestnonpalindrome(s)
{
    // initializing the variables
    let max1 = 1, len = 0;
 
    for (let i = 0; i < s.length - 1; i++) {
        // checking palindrome of size 2
        // example: aa
        if (s[i] == s[i + 1])
            len = 0;
        // checking palindrome of size 3
        // example: aba
        else if (s[i + 1] == s[i - 1] && i > 0)
            len = 1;
        else // incrementing length of substring
            len++;
        max1 = Math.max(max1, len + 1); // finding maximum
    }
 
    // if there exits single character then
    // it is always palindrome
    if (max1 == 1)
        return 0;
    else
        return max1;
}
 
// Driver Code
 
    let s = "synapse";
    document.write(lenoflongestnonpalindrome(s) + "<br>");
     
 
//This code is contributed by Manoj
</script>


Output: 

7

 

Time complexity: O(n) where n is length of input string

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 18 Oct, 2022
Like Article
Save Article
Similar Reads
Related Tutorials