Skip to content
Related Articles

Related Articles

Improve Article

Length of longest balanced parentheses prefix

  • Difficulty Level : Easy
  • Last Updated : 06 May, 2021

Given a string of open bracket ‘(‘ and closed bracket ‘)’. The task is to find the length of longest balanced prefix. 
Examples: 
 

Input : S = "((()())())((" 
Output : 10
From index 0 to index 9, they are forming 
a balanced parentheses prefix.

Input : S = "()(())((()"
Output : 6

 

The idea is take value of open bracket ‘(‘ as 1 and value of close bracket ‘)’ as -1. Now start finding the prefix sum of the given string. The farthest index, say maxi, where the value of sum is 0 is the index upto which longest balanced prefix exists. So the answer would be maxi + 1.
Below is the implementation of this approach: 
 

C++




// CPP Program to find length of longest balanced
// parentheses prefix.
#include <bits/stdc++.h>
using namespace std;
 
// Return the length of longest balanced parentheses
// prefix.
int maxbalancedprefix(char str[], int n)
{
    int sum = 0;
    int maxi = 0;
 
    // Traversing the string.
    for (int i = 0; i < n; i++) {
 
        // If open bracket add 1 to sum.
        if (str[i] == '(')
            sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            sum -= 1;
 
        // if first bracket is closing bracket
        // then this condition would help
        if (sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if (sum == 0)
            maxi = i + 1;
    }
 
    return maxi;
}
 
// Driven Program
int main()
{
    char str[] = "((()())())((";
    int n = strlen(str);
 
    cout << maxbalancedprefix(str, n) << endl;
    return 0;
}

Java




// Java Program to find length of longest
// balanced parentheses prefix.
import java.io.*;
 
class GFG {
 
    // Return the length of longest
    // balanced parentheses prefix.
    static int maxbalancedprefix(String str, int n)
    {
        int sum = 0;
        int maxi = 0;
 
        // Traversing the string.
        for (int i = 0; i < n; i++) {
 
            // If open bracket add 1 to sum.
            if (str.charAt(i) == '(')
                sum += 1;
 
            // If closed bracket subtract 1
            // from sum
            else
                sum -= 1;
 
            // if first bracket is closing bracket
            // then this condition would help
            if (sum < 0)
                break;
 
            // If sum is 0, store the index
            // value.
            if (sum == 0)
                maxi = i + 1;
        }
 
        return maxi;
    }
 
    // Driven Program
    public static void main(String[] args)
    {
        String str = "((()())())((";
        int n = str.length();
 
        System.out.println(maxbalancedprefix(str, n));
    }
}
 
// This code is contributed by vt_m

Python3




# Python3 code to find length of
# longest balanced parentheses prefix.
 
# Function to return the length of
# longest balanced parentheses prefix.
def maxbalancedprefix (str, n):
    _sum = 0
    maxi = 0
     
    # Traversing the string.
    for i in range(n):
     
        # If open bracket add 1 to sum.
        if str[i] == '(':
            _sum += 1
         
        # If closed bracket subtract 1
        # from sum
        else:
            _sum -= 1
        
       # if first bracket is closing bracket
       # then this condition would help
        if _sum < 0:
            break
             
        # If sum is 0, store the
        # index value.
        if _sum == 0:
            maxi = i + 1
    return maxi
     
 
# Driver Code
str = '((()())())(('
n = len(str)
print(maxbalancedprefix (str, n))
 
# This code is contributed by "Abhishek Sharma 44"

C#




// C# Program to find length of longest
// balanced parentheses prefix.
using System;
 
class GFG {
 
    // Return the length of longest
    // balanced parentheses prefix.
    static int maxbalancedprefix(string str, int n)
    {
        int sum = 0;
        int maxi = 0;
 
        // Traversing the string.
        for (int i = 0; i < n; i++) {
 
            // If open bracket add 1 to sum.
            if (str[i] == '(')
                sum += 1;
 
            // If closed bracket subtract 1
            // from sum
            else
                sum -= 1;
 
            // if first bracket is closing bracket
            // then this condition would help
            if (sum < 0)
                break;
 
            // If sum is 0, store the index
            // value.
            if (sum == 0)
                maxi = i + 1;
        }
 
        return maxi;
    }
 
    // Driven Program
    public static void Main()
    {
        string str = "((()())())((";
        int n = str.Length;
 
        Console.WriteLine(maxbalancedprefix(str, n));
    }
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP Program to find length
// of longest balanced
// parentheses prefix.
 
// Return the length of longest
// balanced parentheses prefix.
function maxbalancedprefix($str, $n)
{
    $sum = 0;
    $maxi = 0;
 
    // Traversing the string.
    for ($i = 0; $i <$n; $i++) {
 
        // If open bracket add 1 to sum.
        if ($str[$i] == '(')
            $sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            $sum -= 1;
 
 
        if ($sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if ($sum == 0)
            $maxi = $i+1;
    }
 
    return $maxi;
}
 
// Driver Code
$str = array('(', '(', '(', ')', '(', ')', ')', '(', ')', ')', '(', '(');
$n = count($str);
 
echo maxbalancedprefix($str, $n);
 
// This code is contributed by anuj_67..
?>

Javascript




<script>
 
// Javascript Program to find
// length of longest balanced
// parentheses prefix.
 
// Return the length of longest
// balanced parentheses
// prefix.
function maxbalancedprefix( str, n)
{
    var sum = 0;
    var maxi = 0;
 
    // Traversing the string.
    for (var i = 0; i < n; i++) {
 
        // If open bracket add 1 to sum.
        if (str[i] == '(')
            sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            sum -= 1;
 
        // if first bracket is closing bracket
        // then this condition would help
        if (sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if (sum == 0)
            maxi = i + 1;
    }
 
    return maxi;
}
 
// Driven Program
var str = "((()())())((";
var n = str.length;
document.write( maxbalancedprefix(str, n));
 
</script>

Output:  

10

 



 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :