Related Articles

# Length of longest balanced parentheses prefix

• Difficulty Level : Easy
• Last Updated : 06 May, 2021

Given a string of open bracket ‘(‘ and closed bracket ‘)’. The task is to find the length of longest balanced prefix.
Examples:

```Input : S = "((()())())(("
Output : 10
From index 0 to index 9, they are forming
a balanced parentheses prefix.

Input : S = "()(())((()"
Output : 6```

The idea is take value of open bracket ‘(‘ as 1 and value of close bracket ‘)’ as -1. Now start finding the prefix sum of the given string. The farthest index, say maxi, where the value of sum is 0 is the index upto which longest balanced prefix exists. So the answer would be maxi + 1.
Below is the implementation of this approach:

## C++

 `// CPP Program to find length of longest balanced``// parentheses prefix.``#include ``using` `namespace` `std;` `// Return the length of longest balanced parentheses``// prefix.``int` `maxbalancedprefix(``char` `str[], ``int` `n)``{``    ``int` `sum = 0;``    ``int` `maxi = 0;` `    ``// Traversing the string.``    ``for` `(``int` `i = 0; i < n; i++) {` `        ``// If open bracket add 1 to sum.``        ``if` `(str[i] == ``'('``)``            ``sum += 1;` `        ``// If closed bracket subtract 1``        ``// from sum``        ``else``            ``sum -= 1;` `        ``// if first bracket is closing bracket``        ``// then this condition would help``        ``if` `(sum < 0)``            ``break``;` `        ``// If sum is 0, store the index``        ``// value.``        ``if` `(sum == 0)``            ``maxi = i + 1;``    ``}` `    ``return` `maxi;``}` `// Driven Program``int` `main()``{``    ``char` `str[] = ``"((()())())(("``;``    ``int` `n = ``strlen``(str);` `    ``cout << maxbalancedprefix(str, n) << endl;``    ``return` `0;``}`

## Java

 `// Java Program to find length of longest``// balanced parentheses prefix.``import` `java.io.*;` `class` `GFG {` `    ``// Return the length of longest``    ``// balanced parentheses prefix.``    ``static` `int` `maxbalancedprefix(String str, ``int` `n)``    ``{``        ``int` `sum = ``0``;``        ``int` `maxi = ``0``;` `        ``// Traversing the string.``        ``for` `(``int` `i = ``0``; i < n; i++) {` `            ``// If open bracket add 1 to sum.``            ``if` `(str.charAt(i) == ``'('``)``                ``sum += ``1``;` `            ``// If closed bracket subtract 1``            ``// from sum``            ``else``                ``sum -= ``1``;` `            ``// if first bracket is closing bracket``            ``// then this condition would help``            ``if` `(sum < ``0``)``                ``break``;` `            ``// If sum is 0, store the index``            ``// value.``            ``if` `(sum == ``0``)``                ``maxi = i + ``1``;``        ``}` `        ``return` `maxi;``    ``}` `    ``// Driven Program``    ``public` `static` `void` `main(String[] args)``    ``{``        ``String str = ``"((()())())(("``;``        ``int` `n = str.length();` `        ``System.out.println(maxbalancedprefix(str, n));``    ``}``}` `// This code is contributed by vt_m`

## Python3

 `# Python3 code to find length of``# longest balanced parentheses prefix.` `# Function to return the length of``# longest balanced parentheses prefix.``def` `maxbalancedprefix (``str``, n):``    ``_sum ``=` `0``    ``maxi ``=` `0``    ` `    ``# Traversing the string.``    ``for` `i ``in` `range``(n):``    ` `        ``# If open bracket add 1 to sum.``        ``if` `str``[i] ``=``=` `'('``:``            ``_sum ``+``=` `1``        ` `        ``# If closed bracket subtract 1``        ``# from sum``        ``else``:``            ``_sum ``-``=` `1``       ` `       ``# if first bracket is closing bracket``       ``# then this condition would help``        ``if` `_sum < ``0``:``            ``break``            ` `        ``# If sum is 0, store the``        ``# index value.``        ``if` `_sum ``=``=` `0``:``            ``maxi ``=` `i ``+` `1``    ``return` `maxi``    `  `# Driver Code``str` `=` `'((()())())(('``n ``=` `len``(``str``)``print``(maxbalancedprefix (``str``, n))` `# This code is contributed by "Abhishek Sharma 44"`

## C#

 `// C# Program to find length of longest``// balanced parentheses prefix.``using` `System;` `class` `GFG {` `    ``// Return the length of longest``    ``// balanced parentheses prefix.``    ``static` `int` `maxbalancedprefix(``string` `str, ``int` `n)``    ``{``        ``int` `sum = 0;``        ``int` `maxi = 0;` `        ``// Traversing the string.``        ``for` `(``int` `i = 0; i < n; i++) {` `            ``// If open bracket add 1 to sum.``            ``if` `(str[i] == ``'('``)``                ``sum += 1;` `            ``// If closed bracket subtract 1``            ``// from sum``            ``else``                ``sum -= 1;` `            ``// if first bracket is closing bracket``            ``// then this condition would help``            ``if` `(sum < 0)``                ``break``;` `            ``// If sum is 0, store the index``            ``// value.``            ``if` `(sum == 0)``                ``maxi = i + 1;``        ``}` `        ``return` `maxi;``    ``}` `    ``// Driven Program``    ``public` `static` `void` `Main()``    ``{``        ``string` `str = ``"((()())())(("``;``        ``int` `n = str.Length;` `        ``Console.WriteLine(maxbalancedprefix(str, n));``    ``}``}` `// This code is contributed by vt_m`

## PHP

 ``

## Javascript

 ``

Output:

`10`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up