Kth Smallest element in a Perfect Binary Search Tree
Given a Perfect BST with N nodes and an integer K, the task is to find the Kth smallest element is present in the tree.
Example:
Input: K = 3, N = 15 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 Output: 25 Explanation: The 3rd smallest element in the given BST is 25 Input: K = 9, N = 15 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 Output: 55 Explanation: The 9th smallest element in the given BST is 55
Naive Approach: Do the Inorder traversal in a perfect BST, such as morris traversal or recursive solution, which visits every node and returns the kth visit key. It takes O(N) time complexity to complete the task.
Efficient Approach:
Since the given BST is perfect and the number of nodes of the entire tree is already known, the computational complexity to solve the problem can be reduced to log(N). Follow the steps given below to solve the problem:
- in a perfect BST tree(N), |N| will always be odd in a perfect binary tree, the location of the median in any perfect BST is floor(|N|/2) + 1.
- Calculate the number of nodes in every sub-tree by dividing the total nodes as floor(|N| / 2).
- The left sub-tree of the Perfect BST will always contain the Kth smallest element if:
- K < location(median(N))=M this is because Mth smallest element will always be larger than the Kth smallest element and every element in the right sub-tree will be larger than the Mth smallest element
- The right sub-tree of Perfect BST will always contain a Rth smallest element if:
- K > location(median(N))=M, in this case, K – location(median(N))=R is the Rth smallest element in the right subtree. This is because Rth smallest element in the right sub-tree is larger than Mth smallest element and every element in the left-sub tree is smaller than Mth smallest element but Rth smallest element is larger than all of them. One may think of R as the new number when at least M smaller possibilities can be ignored. The Rth smallest element is the Kth smallest element when recurring into the right sub-tree (But keep in mind that R != K !).
- If K is location(median(T)), then that node contains the Kth smallest element in perfect BST.
Below is the implementation of the above approach:
C++
// C++ program to find K-th // smallest element in a // perfect BST #include <bits/stdc++.h> using namespace std; // A BST node struct Node { int key; Node *left, *right; }; // A utility function to // create a new BST node Node* newNode( int item) { Node* temp = new Node; temp->key = item; temp->left = temp->right = NULL; return temp; } // A utility function to insert a // new node with given key in BST Node* insert(Node* node, int key) { // If the tree is empty if (node == NULL) return newNode(key); // Recur down the left // subtree for smaller values if (key < node->key) node->left = insert(node->left, key); // Recur down the right // subtree for smaller values else if (key > node->key) node->right = insert(node->right, key); // Return the (unchanged) node pointer return node; } // FUnction to find Kth Smallest // element in a perfect BST bool KSmallestPerfectBST(Node* root, int k, int treeSize, int & kth_smallest) { if (root == NULL) return false ; // Find the median // (division operation is floored) int median_loc = (treeSize / 2) + 1; // If the element is at // the median if (k == median_loc) { kth_smallest = root->key; return true ; } // calculate the number of nodes in the // right and left sub-trees // (division operation is floored) int newTreeSize = treeSize / 2; // If median is located higher if (k < median_loc) { return KSmallestPerfectBST( root->left, k, newTreeSize, kth_smallest); } // If median is located lower int newK = k - median_loc; return KSmallestPerfectBST(root->right, newK, newTreeSize, kth_smallest); } // Driver Code int main() { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 */ Node* root = NULL; root = insert(root, 50); insert(root, 30); insert(root, 20); insert(root, 40); insert(root, 70); insert(root, 60); insert(root, 80); insert(root, 14); insert(root, 25); insert(root, 35); insert(root, 45); insert(root, 55); insert(root, 65); insert(root, 75); insert(root, 85); int n = 15, k = 5; int ans = -1; // Function call if (KSmallestPerfectBST(root, k, n, ans)) { cout << ans << " " ; } return 0; } |
Java
// Java program to find K-th // smallest element in a // perfect BST import java.util.*; class GFG{ // A BST node static class Node { int key; Node left, right; }; static int kth_smallest; // A utility function to // create a new BST node public static Node newNode( int item) { Node temp = new Node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to insert a // new node with given key in BST static Node insert(Node node, int key) { // If the tree is empty if (node == null ) return newNode(key); // Recur down the left // subtree for smaller values if (key < node.key) node.left = insert(node.left, key); // Recur down the right // subtree for smaller values else if (key > node.key) node.right = insert(node.right, key); // Return the (unchanged) node pointer return node; } // FUnction to find Kth Smallest // element in a perfect BST static boolean KSmallestPerfectBST(Node root, int k, int treeSize) { if (root == null ) return false ; // Find the median // (division operation is floored) int median_loc = (treeSize / 2 ) + 1 ; // If the element is at // the median if (k == median_loc) { kth_smallest = root.key; return true ; } // calculate the number of nodes in the // right and left sub-trees // (division operation is floored) int newTreeSize = treeSize / 2 ; // If median is located higher if (k < median_loc) { return KSmallestPerfectBST( root.left, k, newTreeSize); } // If median is located lower int newK = k - median_loc; return KSmallestPerfectBST(root.right, newK, newTreeSize); } // Driver Code public static void main(String[] args) { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 */ Node root = null ; root = insert(root, 50 ); insert(root, 30 ); insert(root, 20 ); insert(root, 40 ); insert(root, 70 ); insert(root, 60 ); insert(root, 80 ); insert(root, 14 ); insert(root, 25 ); insert(root, 35 ); insert(root, 45 ); insert(root, 55 ); insert(root, 65 ); insert(root, 75 ); insert(root, 85 ); int n = 15 , k = 5 ; // Function call if (KSmallestPerfectBST(root, k, n)) { System.out.print(kth_smallest + " " ); } } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program to find K-th # smallest element in a perfect BST kth_smallest = 0 # A BST node class newNode: def __init__( self , item): self .key = item self .left = None self .right = None # A utility function to insert a # new node with given key in BST def insert(node, key): # If the tree is empty if (node = = None ): return newNode(key) # Recur down the left # subtree for smaller values if (key < node.key): node.left = insert(node.left, key) # Recur down the right # subtree for smaller values elif (key > node.key): node.right = insert(node.right, key) # Return the (unchanged) node pointer return node # FUnction to find Kth Smallest # element in a perfect BST def KSmallestPerfectBST(root, k, treeSize): global kth_smallest if (root = = None ): return False # Find the median # (division operation is floored) median_loc = (treeSize / / 2 ) + 1 # If the element is at # the median if (k = = median_loc): kth_smallest = root.key return True # Calculate the number of nodes in # the right and left sub-trees # (division operation is floored) newTreeSize = treeSize / / 2 # If median is located higher if (k < median_loc): return KSmallestPerfectBST(root.left, k, newTreeSize) # If median is located lower newK = k - median_loc return KSmallestPerfectBST(root.right, newK, newTreeSize) # Driver Code if __name__ = = '__main__' : ''' Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 ''' root = None root = insert(root, 50 ) insert(root, 30 ) insert(root, 20 ) insert(root, 40 ) insert(root, 70 ) insert(root, 60 ) insert(root, 80 ) insert(root, 14 ) insert(root, 25 ) insert(root, 35 ) insert(root, 45 ) insert(root, 55 ) insert(root, 65 ) insert(root, 75 ) insert(root, 85 ) n = 15 k = 5 # Function call if (KSmallestPerfectBST(root, k, n)): print (kth_smallest, end = " " ) # This code is contributed by ipg2016107 |
C#
// C# program to find K-th // smallest element in a // perfect BST using System; class GFG{ // A BST node public class Node { public int key; public Node left, right; }; static int kth_smallest; // A utility function to // create a new BST node public static Node newNode( int item) { Node temp = new Node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to // insert a new node with // given key in BST static Node insert(Node node, int key) { // If the tree is empty if (node == null ) return newNode(key); // Recur down the left // subtree for smaller values if (key < node.key) node.left = insert(node.left, key); // Recur down the right // subtree for smaller values else if (key > node.key) node.right = insert(node.right, key); // Return the (unchanged) // node pointer return node; } // Function to find Kth Smallest // element in a perfect BST static bool KSmallestPerfectBST(Node root, int k, int treeSize) { if (root == null ) return false ; // Find the median // (division operation is floored) int median_loc = (treeSize / 2) + 1; // If the element is at // the median if (k == median_loc) { kth_smallest = root.key; return true ; } // calculate the number of nodes // in the right and left sub-trees // (division operation is floored) int newTreeSize = treeSize / 2; // If median is located higher if (k < median_loc) { return KSmallestPerfectBST(root.left, k, newTreeSize); } // If median is located lower int newK = k - median_loc; return KSmallestPerfectBST(root.right, newK, newTreeSize); } // Driver Code public static void Main(String[] args) { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 */ Node root = null ; root = insert(root, 50); insert(root, 30); insert(root, 20); insert(root, 40); insert(root, 70); insert(root, 60); insert(root, 80); insert(root, 14); insert(root, 25); insert(root, 35); insert(root, 45); insert(root, 55); insert(root, 65); insert(root, 75); insert(root, 85); int n = 15, k = 5; // Function call if (KSmallestPerfectBST(root, k, n)) { Console.Write(kth_smallest + " " ); } } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to find K-th // smallest element in a // perfect BST // A BST node class Node { constructor() { this .key = 0; this .left = null ; this .right = null ; } }; var kth_smallest; // A utility function to // create a new BST node function newNode(item) { var temp = new Node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to // insert a new node with // given key in BST function insert( node, key) { // If the tree is empty if (node == null ) return newNode(key); // Recur down the left // subtree for smaller values if (key < node.key) node.left = insert(node.left, key); // Recur down the right // subtree for smaller values else if (key > node.key) node.right = insert(node.right, key); // Return the (unchanged) // node pointer return node; } // Function to find Kth Smallest // element in a perfect BST function KSmallestPerfectBST(root, k, treeSize) { if (root == null ) return false ; // Find the median // (division operation is floored) var median_loc = parseInt(treeSize / 2) + 1; // If the element is at // the median if (k == median_loc) { kth_smallest = root.key; return true ; } // calculate the number of nodes // in the right and left sub-trees // (division operation is floored) var newTreeSize = parseInt(treeSize / 2); // If median is located higher if (k < median_loc) { return KSmallestPerfectBST(root.left, k, newTreeSize); } // If median is located lower var newK = k - median_loc; return KSmallestPerfectBST(root.right, newK, newTreeSize); } // Driver Code /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 /\ /\ /\ / \ 14 25 35 45 55 65 75 85 */ var root = null ; root = insert(root, 50); insert(root, 30); insert(root, 20); insert(root, 40); insert(root, 70); insert(root, 60); insert(root, 80); insert(root, 14); insert(root, 25); insert(root, 35); insert(root, 45); insert(root, 55); insert(root, 65); insert(root, 75); insert(root, 85); var n = 15, k = 5; // Function call if (KSmallestPerfectBST(root, k, n)) { document.write(kth_smallest + " " ); } // This code is contributed by rrrtnx. </script> |
Output
35
Time complexity: O(Log(N))
Auxiliary Space: O(Log(N))
Please Login to comment...