GeeksforGeeks App
Open App
Browser
Continue

# Javascript Program to Efficiently compute sums of diagonals of a matrix

Given a 2D square matrix, find the sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.

```A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33```

The primary diagonal is formed by the elements A00, A11, A22, A33.

1. Condition for Principal Diagonal: The row-column condition is row = column.
The secondary diagonal is formed by the elements A03, A12, A21, A30.
2. Condition for Secondary Diagonal: The row-column condition is row = numberOfRows – column -1.

Examples :

```Input :
4
1 2 3 4
4 3 2 1
7 8 9 6
6 5 4 3
Output :
Principal Diagonal: 16
Secondary Diagonal: 20

Input :
3
1 1 1
1 1 1
1 1 1
Output :
Principal Diagonal: 3
Secondary Diagonal: 3```

Method 1 (O(n ^ 2) :

In this method, we use two loops i.e. a loop for columns and a loop for rows and in the inner loop we check for the condition stated above:

## Javascript

 ``

Output:

```Principal Diagonal:18
Secondary Diagonal:18```

Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.

Auxiliary Space: O(1), as we are not using any extra space.

Method 2 (O(n) :

In this method we use one loop i.e. a loop for calculating sum of both the principal and secondary diagonals:

## Javascript

 ``

Output :

```Principal Diagonal:18
Secondary Diagonal:18```

Time Complexity: O(N), as we are using a loop to traverse N times.

Auxiliary Space: O(1), as we are not using any extra space.
Please refer complete article on Efficiently compute sums of diagonals of a matrix for more details!

My Personal Notes arrow_drop_up