Center element of matrix equals sums of half diagonals

Given a matrix of odd order i.e(5*5). Task is to check if the center element of the matrix is equal to the individual sum of all the half diagonals. Examples:

Input : mat[][] = {   2   9   1   4  -2
6   7   2  11   4
4    2  9   2   4
1   9   2    4  4
0   2   4    2  5 }
Output :Yes
Explanation :
Sum of Half Diagonal 1 = 2 + 7 = 9
Sum of Half Diagonal 2 = 9 + 0 = 9
Sum of Half Diagonal 3 = 11 + -2 = 9
Sum of Half Diagonal 4 = 5 + 4 = 9

Here, All the sums equal to the center element
that is mat = 9

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Simple Approach:
Iterate two loops, find all half diagonal sums and then check all sums are equal to the center element of the matrix or not. If any one of them is not equal to center element Then print “No” Else “Yes”.
Time Complexity: O(N*N)

Efficient Approach : is based on Efficient approach to find diagonal sum in O(N) .

Below are the Implementation of this approach

C++

 // C++ Program to check if the center // element is equal to the individual  // sum of all the half diagonals #include #include using namespace std;    const int MAX = 100;    // Function to Check center element  // is equal to the individual  // sum of all the half diagonals bool HalfDiagonalSums(int mat[][MAX], int n) {         // Find sums of half diagonals     int diag1_left = 0, diag1_right = 0;     int diag2_left = 0, diag2_right = 0;         for (int i = 0, j = n - 1; i < n; i++, j--) {                    if (i < n/2) {             diag1_left += mat[i][i];             diag2_left += mat[j][i];                    }         else if (i > n/2) {             diag1_right += mat[i][i];             diag2_right += mat[j][i];                    }     }            return (diag1_left == diag2_right &&              diag2_right == diag2_left &&             diag1_right == diag2_left &&             diag2_right == mat[n/2][n/2]); }    // Driver code int main() {     int a[][MAX] = { { 2, 9, 1, 4, -2},                      { 6, 7, 2, 11, 4},                       { 4, 2, 9, 2, 4},                      { 1, 9, 2, 4, 4},                      { 0, 2, 4, 2, 5} };         cout << ( HalfDiagonalSums(a, 5) ? "Yes" : "No" );     return 0; }

Java

 // Java program to find maximum elements  // that can be made equal with k updates import java.util.Arrays; public class GFG {            static int MAX = 100;            // Function to Check center element      // is equal to the individual      // sum of all the half diagonals     static boolean HalfDiagonalSums(int mat[][],                                           int n)     {                     // Find sums of half diagonals         int diag1_left = 0, diag1_right = 0;         int diag2_left = 0, diag2_right = 0;          for (int i = 0, j = n - 1; i < n;                                      i++, j--)         {                            if (i < n/2) {                 diag1_left += mat[i][i];                 diag2_left += mat[j][i];                      }             else if (i > n/2) {                 diag1_right += mat[i][i];                 diag2_right += mat[j][i];                      }         }                    return (diag1_left == diag2_right &&                  diag2_right == diag2_left &&                 diag1_right == diag2_left &&                 diag2_right == mat[n/2][n/2]);     }            // Driver code     public static void main(String args[])      {                    int a[][] = { { 2, 9, 1, 4, -2},                       { 6, 7, 2, 11, 4},                        { 4, 2, 9, 2, 4},                       { 1, 9, 2, 4, 4},                       { 0, 2, 4, 2, 5} };                                  System.out.print ( HalfDiagonalSums(a, 5)                                 ? "Yes" : "No" );     } }    // This code is contributed by Sam007

Python 3

 # Python 3 Program to check if the center # element is equal to the individual  # sum of all the half diagonals     MAX = 100     # Function to Check center element  # is equal to the individual  # sum of all the half diagonals def HalfDiagonalSums( mat,  n):        # Find sums of half diagonals     diag1_left = 0     diag1_right = 0     diag2_left = 0     diag2_right = 0       i = 0     j = n - 1     while i < n:                     if (i < n//2) :             diag1_left += mat[i][i]             diag2_left += mat[j][i]                               elif (i > n//2) :             diag1_right += mat[i][i]             diag2_right += mat[j][i]                    i += 1         j -= 1             return (diag1_left == diag2_right and             diag2_right == diag2_left and             diag1_right == diag2_left and             diag2_right == mat[n//2][n//2])     # Driver code if __name__ == "__main__":            a = [[2, 9, 1, 4, -2],          [6, 7, 2, 11, 4],           [ 4, 2, 9, 2, 4],          [1, 9, 2, 4, 4 ],          [ 0, 2, 4, 2, 5]]            print("Yes") if (HalfDiagonalSums(a, 5)) else print("No" )

C#

 // C# program to find maximum  // elements that can be made  // equal with k updates using System;    class GFG {        // Function to Check      // center element is     // equal to the individual      // sum of all the half      // diagonals     static bool HalfDiagonalSums(int [,]mat,                                  int n)     {                     // Find sums of          // half diagonals         int diag1_left = 0,              diag1_right = 0;         int diag2_left = 0,              diag2_right = 0;          for (int i = 0, j = n - 1;                   i < n; i++, j--)         {                            if (i < n / 2)              {                 diag1_left += mat[i, i];                 diag2_left += mat[j, i];                  }             else if (i > n / 2)              {                 diag1_right += mat[i, i];                 diag2_right += mat[j, i];                      }         }                    return (diag1_left == diag2_right &&                  diag2_right == diag2_left &&                 diag1_right == diag2_left &&                 diag2_right == mat[n / 2, n / 2]);     }            // Driver code     static public void Main ()     {         int [,]a = {{ 2, 9, 1, 4, -2},                     { 6, 7, 2, 11, 4},                      { 4, 2, 9, 2, 4},                     { 1, 9, 2, 4, 4},                     { 0, 2, 4, 2, 5}};                                Console.WriteLine(HalfDiagonalSums(a, 5)?                                    "Yes" : "No" );     } }    // This code is contributed by ajit

PHP

 \$n / 2)          {             \$diag1_right += \$mat[\$i][\$i];             \$diag2_right += \$mat[\$j][\$i];              }     }            return (\$diag1_left == \$diag2_right &&              \$diag2_right == \$diag2_left &&             \$diag1_right == \$diag2_left &&             \$diag2_right == \$mat[\$n / 2][\$n / 2]); }    // Driver code \$a = array(array(2, 9, 1, 4, -2),            array(6, 7, 2, 11, 4),             array(4, 2, 9, 2, 4),            array(1, 9, 2, 4, 4),            array(0, 2, 4, 2, 5)); if(HalfDiagonalSums(\$a, 5) == 0)     echo "Yes" ; else     echo "No" ;            // This code is contributed // by akt_mit ?>

Output:

Yes

Time Complexity : O(N)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Sam007, jit_t, chitranayal

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.