Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Java Program for Largest Sum Contiguous Subarray

  • Last Updated : 29 Nov, 2021

Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum. 

kadane-algorithm

 

Kadane’s Algorithm:

Initialize:
    max_so_far = INT_MIN
    max_ending_here = 0

Loop for each element of the array
  (a) max_ending_here = max_ending_here + a[i]
  (b) if(max_so_far < max_ending_here)
            max_so_far = max_ending_here
  (c) if(max_ending_here < 0)
            max_ending_here = 0
return max_so_far

Explanation: 
The simple idea of Kadane's algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this). And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this). Each time we get a positive-sum compare it with max_so_far and update max_so_far if it is greater than max_so_far 



    Lets take the example:
    {-2, -3, 4, -1, -2, 1, 5, -3}

    max_so_far = max_ending_here = 0

    for i=0,  a[0] =  -2
    max_ending_here = max_ending_here + (-2)
    Set max_ending_here = 0 because max_ending_here < 0

    for i=1,  a[1] =  -3
    max_ending_here = max_ending_here + (-3)
    Set max_ending_here = 0 because max_ending_here < 0

    for i=2,  a[2] =  4
    max_ending_here = max_ending_here + (4)
    max_ending_here = 4
    max_so_far is updated to 4 because max_ending_here greater 
    than max_so_far which was 0 till now

    for i=3,  a[3] =  -1
    max_ending_here = max_ending_here + (-1)
    max_ending_here = 3

    for i=4,  a[4] =  -2
    max_ending_here = max_ending_here + (-2)
    max_ending_here = 1

    for i=5,  a[5] =  1
    max_ending_here = max_ending_here + (1)
    max_ending_here = 2

    for i=6,  a[6] =  5
    max_ending_here = max_ending_here + (5)
    max_ending_here = 7
    max_so_far is updated to 7 because max_ending_here is 
    greater than max_so_far

    for i=7,  a[7] =  -3
    max_ending_here = max_ending_here + (-3)
    max_ending_here = 4

Program: 

Java




import java.io.*;
// Java program to print largest contiguous array sum
import java.util.*;
  
class Kadane
{
    public static void main (String[] args)
    {
        int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
        System.out.println("Maximum contiguous sum is " +
                                       maxSubArraySum(a));
    }
  
    static int maxSubArraySum(int a[])
    {
        int size = a.length;
        int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
  
        for (int i = 0; i < size; i++)
        {
            max_ending_here = max_ending_here + a[i];
            if (max_so_far < max_ending_here)
                max_so_far = max_ending_here;
            if (max_ending_here < 0)
                max_ending_here = 0;
        }
        return max_so_far;
    }
}

Output:

Maximum contiguous sum is 7

Another approach:

 

Java




static int maxSubArraySum(int a[],int size) 
      
    int max_so_far = a[0], max_ending_here = 0
  
    for (int i = 0; i < size; i++) 
    
        max_ending_here = max_ending_here + a[i];
        if (max_ending_here < 0
            max_ending_here = 0
          
        /* Do not compare for all
           elements. Compare only 
           when max_ending_here > 0 */
        else if (max_so_far < max_ending_here) 
            max_so_far = max_ending_here; 
          
    
    return max_so_far; 
  
// This code is contributed by ANKITRAI1

Time Complexity: O(n) 

Algorithmic Paradigm: Dynamic Programming
Following is another simple implementation suggested by Mohit Kumar. The implementation handles the case when all numbers in the array are negative. 

Java




// Java program to print largest contiguous
// array sum
import java.io.*;
  
class GFG {
  
    static int maxSubArraySum(int a[], int size)
    {
    int max_so_far = a[0];
    int curr_max = a[0];
  
    for (int i = 1; i < size; i++)
    {
           curr_max = Math.max(a[i], curr_max+a[i]);
        max_so_far = Math.max(max_so_far, curr_max);
    }
    return max_so_far;
    }
  
    /* Driver program to test maxSubArraySum */
    public static void main(String[] args)
    {
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = a.length;   
    int max_sum = maxSubArraySum(a, n);
    System.out.println("Maximum contiguous sum is " 
                       + max_sum);
    }
}
  
// This code is contributed by Prerna Saini

Output: 

Maximum contiguous sum is 7

To print the subarray with the maximum sum, we maintain indices whenever we get the maximum sum.  

Java




// Java program to print largest 
// contiguous array sum
class GFG {
  
    static void maxSubArraySum(int a[], int size)
    {
        int max_so_far = Integer.MIN_VALUE,
        max_ending_here = 0,start = 0,
        end = 0, s = 0;
  
        for (int i = 0; i < size; i++) 
        {
            max_ending_here += a[i];
  
            if (max_so_far < max_ending_here) 
            {
                max_so_far = max_ending_here;
                start = s;
                end = i;
            }
  
            if (max_ending_here < 0
            {
                max_ending_here = 0;
                s = i + 1;
            }
        }
        System.out.println("Maximum contiguous sum is " 
                           + max_so_far);
        System.out.println("Starting index " + start);
        System.out.println("Ending index " + end);
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
        int n = a.length;
        maxSubArraySum(a, n);
    }
}
  
// This code is contributed by  prerna saini

Output: 

Maximum contiguous sum is 7
Starting index 2
Ending index 6

Kadane's Algorithm can be viewed both as a greedy and DP. As we can see that we are keeping a running sum of integers and when it becomes less than 0, we reset it to 0 (Greedy Part). This is because continuing with a negative sum is way more worse than restarting with a new range. Now it can also be viewed as a DP, at each stage we have 2 choices: Either take the current element and continue with previous sum OR restart a new range. These both choices are being taken care of in the implementation. 

Time Complexity: O(n)

Auxiliary Space: O(1)

Now try the below question 
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying 'n' consecutive integers in the array where n ≤ ARRAY_SIZE. Also, print the starting point of the maximum product subarray.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!