Skip to content
Related Articles

Related Articles

How to make Custom Buttons in Plotly?
  • Last Updated : 01 Oct, 2020

A Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library. 

Making Custom Buttons

In plotly, actions custom Buttons are used to quickly make actions directly from a record. Custom Buttons can be added to page layouts in CRM, Marketing, and Custom Apps. There are 4 possible methods that can be applied in custom buttons:

  • restyle: modify data or data attributes
  • relayout: modify layout attributes
  • update: modify data and layout attributes
  • animate: start or pause an animation

Example 1: Using Restyle Method

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

import plotly.graph_objects as px
import numpy as np
  
  
# creating random data through randomint
# function of numpy.random
np.random.seed(42)
  
random_x = np.random.randint(1, 101, 100)
random_y = np.random.randint(1, 101, 100)
  
plot = px.Figure(data=[px.Scatter(
    x=random_x,
    y=random_y,
    mode='markers',)
])
  
# Add dropdown
plot.update_layout(
    updatemenus=[
        dict(
            type="buttons",
            direction="left",
            buttons=list([
                dict(
                    args=["type", "scatter"],
                    label="Scatter Plot",
                    method="restyle"
                ),
                dict(
                    args=["type", "bar"],
                    label="Bar Chart",
                    method="restyle"
                )
            ]),
        ),
    ]
)
  
plot.show()

chevron_right


Output:



Example 2: Using Update method

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

import plotly.graph_objects as px
import numpy
  
  
# creating random data through randomint
# function of numpy.random
np.random.seed(42)
  
random_x = np.random.randint(1, 101, 100)
random_y = np.random.randint(1, 101, 100)
  
x = ['A', 'B', 'C', 'D']
  
plot = px.Figure(data=[go.Bar(
    name='Data 1',
    x=x,
    y=[100, 200, 500, 673]
),
    go.Bar(
    name='Data 2',
    x=x,
    y=[56, 123, 982, 213]
)
])
  
  
# Add dropdown
plot.update_layout(
    updatemenus=[
        dict(
            type="buttons",
            direction="left",
            buttons=list([
                dict(label="Both",
                     method="update",
                     args=[{"visible": [True, True]},
                           {"title": "Both"}]),
                dict(label="Data 1",
                     method="update",
                     args=[{"visible": [True, False]},
                           {"title": "Data 1",
                            }]),
                dict(label="Data 2",
                     method="update",
                     args=[{"visible": [False, True]},
                           {"title": "Data 2",
                            }]),
            ]),
        )
    ])
  
plot.show()

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :