Given a sorted linked list and a value to insert, write a function to insert the value in a sorted way.
Initial Linked List

Linked List after insertion of 9

Algorithm:
Let input linked list is sorted in increasing order.
1) If Linked list is empty then make the node as
head and return it.
2) If the value of the node to be inserted is smaller
than the value of the head node, then insert the node
at the start and make it head.
3) In a loop, find the appropriate node after
which the input node (let 9) is to be inserted.
To find the appropriate node start from the head,
keep moving until you reach a node GN (10 in
the below diagram) who's value is greater than
the input node. The node just before GN is the
appropriate node (7).
4) Insert the node (9) after the appropriate node
(7) found in step 3.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
class Node {
public :
int data;
Node* next;
};
void sortedInsert(Node** head_ref,
Node* new_node)
{
Node* current;
if (*head_ref == NULL
|| (*head_ref)->data
>= new_node->data) {
new_node->next = *head_ref;
*head_ref = new_node;
}
else {
current = *head_ref;
while (current->next != NULL
&& current->next->data
< new_node->data) {
current = current->next;
}
new_node->next = current->next;
current->next = new_node;
}
}
Node* newNode( int new_data)
{
Node* new_node = new Node();
new_node->data = new_data;
new_node->next = NULL;
return new_node;
}
void printList(Node* head)
{
Node* temp = head;
while (temp != NULL) {
cout << temp->data << " " ;
temp = temp->next;
}
}
int main()
{
Node* head = NULL;
Node* new_node = newNode(5);
sortedInsert(&head, new_node);
new_node = newNode(10);
sortedInsert(&head, new_node);
new_node = newNode(7);
sortedInsert(&head, new_node);
new_node = newNode(3);
sortedInsert(&head, new_node);
new_node = newNode(1);
sortedInsert(&head, new_node);
new_node = newNode(9);
sortedInsert(&head, new_node);
cout << "Created Linked List\n" ;
printList(head);
return 0;
}
|
C
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
void sortedInsert( struct Node** head_ref,
struct Node* new_node)
{
struct Node* current;
if (*head_ref == NULL
|| (*head_ref)->data
>= new_node->data) {
new_node->next = *head_ref;
*head_ref = new_node;
}
else {
current = *head_ref;
while (current->next != NULL
&& current->next->data < new_node->data) {
current = current->next;
}
new_node->next = current->next;
current->next = new_node;
}
}
struct Node* newNode( int new_data)
{
struct Node* new_node
= ( struct Node*) malloc (
sizeof ( struct Node));
new_node->data = new_data;
new_node->next = NULL;
return new_node;
}
void printList( struct Node* head)
{
struct Node* temp = head;
while (temp != NULL) {
printf ( "%d " , temp->data);
temp = temp->next;
}
}
int main()
{
struct Node* head = NULL;
struct Node* new_node = newNode(5);
sortedInsert(&head, new_node);
new_node = newNode(10);
sortedInsert(&head, new_node);
new_node = newNode(7);
sortedInsert(&head, new_node);
new_node = newNode(3);
sortedInsert(&head, new_node);
new_node = newNode(1);
sortedInsert(&head, new_node);
new_node = newNode(9);
sortedInsert(&head, new_node);
printf ( "\n Created Linked List\n" );
printList(head);
return 0;
}
|
Java
class LinkedList {
Node head;
class Node {
int data;
Node next;
Node( int d)
{
data = d;
next = null ;
}
}
void sortedInsert(Node new_node)
{
Node current;
if (head == null || head.data
>= new_node.data) {
new_node.next = head;
head = new_node;
}
else {
current = head;
while (current.next != null
&& current.next.data < new_node.data) {
current = current.next;
}
new_node.next = current.next;
current.next = new_node;
}
}
Node newNode( int data)
{
Node x = new Node(data);
return x;
}
void printList()
{
Node temp = head;
while (temp != null ) {
System.out.print(temp.data + " " );
temp = temp.next;
}
}
public static void main(String args[])
{
LinkedList llist = new LinkedList();
Node new_node;
new_node = llist.newNode( 5 );
llist.sortedInsert(new_node);
new_node = llist.newNode( 10 );
llist.sortedInsert(new_node);
new_node = llist.newNode( 7 );
llist.sortedInsert(new_node);
new_node = llist.newNode( 3 );
llist.sortedInsert(new_node);
new_node = llist.newNode( 1 );
llist.sortedInsert(new_node);
new_node = llist.newNode( 9 );
llist.sortedInsert(new_node);
System.out.println( "Created Linked List" );
llist.printList();
}
}
|
Python
class Node:
def __init__( self , data):
self .data = data
self . next = None
class LinkedList:
def __init__( self ):
self .head = None
def sortedInsert( self , new_node):
if self .head is None :
new_node. next = self .head
self .head = new_node
elif self .head.data > = new_node.data:
new_node. next = self .head
self .head = new_node
else :
current = self .head
while (current. next is not None and
current. next .data < new_node.data):
current = current. next
new_node. next = current. next
current. next = new_node
def push( self , new_data):
new_node = Node(new_data)
new_node. next = self .head
self .head = new_node
def printList( self ):
temp = self .head
while (temp):
print temp.data,
temp = temp. next
llist = LinkedList()
new_node = Node( 5 )
llist.sortedInsert(new_node)
new_node = Node( 10 )
llist.sortedInsert(new_node)
new_node = Node( 7 )
llist.sortedInsert(new_node)
new_node = Node( 3 )
llist.sortedInsert(new_node)
new_node = Node( 1 )
llist.sortedInsert(new_node)
new_node = Node( 9 )
llist.sortedInsert(new_node)
print "Create Linked List"
llist.printList()
|
C#
using System;
public class LinkedList {
Node head;
class Node {
public int data;
public Node next;
public Node( int d)
{
data = d;
next = null ;
}
}
void sortedInsert(Node new_node)
{
Node current;
if (head == null || head.data >= new_node.data) {
new_node.next = head;
head = new_node;
}
else {
current = head;
while (current.next != null && current.next.data < new_node.data)
current = current.next;
new_node.next = current.next;
current.next = new_node;
}
}
Node newNode( int data)
{
Node x = new Node(data);
return x;
}
void printList()
{
Node temp = head;
while (temp != null ) {
Console.Write(temp.data + " " );
temp = temp.next;
}
}
public static void Main(String[] args)
{
LinkedList llist = new LinkedList();
Node new_node;
new_node = llist.newNode(5);
llist.sortedInsert(new_node);
new_node = llist.newNode(10);
llist.sortedInsert(new_node);
new_node = llist.newNode(7);
llist.sortedInsert(new_node);
new_node = llist.newNode(3);
llist.sortedInsert(new_node);
new_node = llist.newNode(1);
llist.sortedInsert(new_node);
new_node = llist.newNode(9);
llist.sortedInsert(new_node);
Console.WriteLine( "Created Linked List" );
llist.printList();
}
}
|
Javascript
<script>
var head;
class Node {
constructor(val) {
this .data = val;
this .next = null ;
}
}
function sortedInsert( new_node) {
var current;
if (head == null || head.data >= new_node.data) {
new_node.next = head;
head = new_node;
} else {
current = head;
while (current.next != null && current.next.data < new_node.data)
current = current.next;
new_node.next = current.next;
current.next = new_node;
}
}
function newNode(data) {
x = new Node(data);
return x;
}
function printList() {
temp = head;
while (temp != null ) {
document.write(temp.data + " " );
temp = temp.next;
}
}
var new_node;
new_node = newNode(5);
sortedInsert(new_node);
new_node = newNode(10);
sortedInsert(new_node);
new_node = newNode(7);
sortedInsert(new_node);
new_node = newNode(3);
sortedInsert(new_node);
new_node = newNode(1);
sortedInsert(new_node);
new_node = newNode(9);
sortedInsert(new_node);
document.write( "Created Linked List<br/>" );
printList();
</script>
|
Output
Created Linked List
1 3 5 7 9 10
Complexity Analysis:
- Time Complexity: O(n).
Only one traversal of the list is needed.
- Auxiliary Space: O(1).
No extra space is needed.
Shorter Implementation using double pointers:
Thanks to Murat M Ozturk for providing this solution. Please see Murat M Ozturk’s comment below for complete function. The code uses double-pointer to keep track of the next pointer of the previous node (after which new node is being inserted).
Note that below line in code changes current to have address of next pointer in a node.
current = &((*current)->next);
Also, note below comments.
/* Copies the value-at-address current to
new_node's next pointer*/
new_node->next = *current;
/* Fix next pointer of the node (using its address)
after which new_node is being inserted */
*current = new_node;
Time Complexity: O(n)
Auxiliary Space: O(1) because it is using constant space
Approach:
- If the linked list is empty, then make the new node as the head and return.
- Traverse the linked list till either current node becomes None or current node’s value is greater than the new node’s value.
- If the new node is to be inserted at the beginning, then the head of the linked list needs to be changed to the new node.
- If the new node is to be inserted at any other position, then the previous node’s next should point to the new node, and the new node’s next should point to the current node.
- Return the head of the linked list.
Code for another approach:
C++
#include <iostream>
using namespace std;
class Node {
public :
int data;
Node* next;
Node( int data) {
this ->data = data;
next = nullptr;
}
};
class LinkedList {
private :
Node* head;
public :
LinkedList() {
head = nullptr;
}
void sortedInsert(Node* new_node) {
if (head == nullptr) {
head = new_node;
return ;
}
Node* prev = nullptr;
Node* current = head;
while (current && current->data < new_node->data) {
prev = current;
current = current->next;
}
if (prev == nullptr) {
new_node->next = head;
head = new_node;
}
else {
new_node->next = current;
prev->next = new_node;
}
}
void push( int data) {
Node* new_node = new Node(data);
new_node->next = head;
head = new_node;
}
void printList() {
Node* temp = head;
while (temp != nullptr) {
cout << temp->data << " " ;
temp = temp->next;
}
}
};
int main() {
LinkedList llist;
Node* new_node = new Node(5);
llist.sortedInsert(new_node);
new_node = new Node(10);
llist.sortedInsert(new_node);
new_node = new Node(7);
llist.sortedInsert(new_node);
new_node = new Node(3);
llist.sortedInsert(new_node);
new_node = new Node(1);
llist.sortedInsert(new_node);
new_node = new Node(9);
llist.sortedInsert(new_node);
cout << "Create Linked List" << endl;
llist.printList();
return 0;
}
|
Java
class Node {
int data;
Node next;
Node( int data) {
this .data = data;
next = null ;
}
}
public class LinkedList {
Node head;
static class Node {
int data;
Node next;
Node( int d) {
data = d;
next = null ;
}
}
public void sortedInsert(Node new_node) {
if (head == null ) {
head = new_node;
return ;
}
Node current = head;
Node prev = null ;
while (current != null && current.data < new_node.data) {
prev = current;
current = current.next;
}
if (prev == null ) {
new_node.next = head;
head = new_node;
} else {
new_node.next = current;
prev.next = new_node;
}
}
public void printList() {
Node current = head;
while (current != null ) {
System.out.print(current.data + " " );
current = current.next;
}
}
public static void main(String[] args) {
LinkedList list = new LinkedList();
Node new_node = new Node( 5 );
list.sortedInsert(new_node);
new_node = new Node( 10 );
list.sortedInsert(new_node);
new_node = new Node( 7 );
list.sortedInsert(new_node);
new_node = new Node( 3 );
list.sortedInsert(new_node);
new_node = new Node( 1 );
list.sortedInsert(new_node);
new_node = new Node( 9 );
list.sortedInsert(new_node);
System.out.println( "Created Linked List" );
list.printList();
}
}
|
Python3
class Node:
def __init__( self , data):
self .data = data
self . next = None
class LinkedList:
def __init__( self ):
self .head = None
def sortedInsert( self , new_node):
if self .head is None :
self .head = new_node
return
prev = None
current = self .head
while current and current.data < new_node.data:
prev = current
current = current. next
if prev is None :
new_node. next = self .head
self .head = new_node
else :
new_node. next = current
prev. next = new_node
def printList( self ):
temp = self .head
while temp:
print (temp.data, end = " " )
temp = temp. next
llist = LinkedList()
new_node = Node( 5 )
llist.sortedInsert(new_node)
new_node = Node( 10 )
llist.sortedInsert(new_node)
new_node = Node( 7 )
llist.sortedInsert(new_node)
new_node = Node( 3 )
llist.sortedInsert(new_node)
new_node = Node( 1 )
llist.sortedInsert(new_node)
new_node = Node( 9 )
llist.sortedInsert(new_node)
print ( "Create Linked List" )
llist.printList()
|
C#
using System;
public class Node
{
public int data;
public Node next;
public Node( int data)
{
this .data = data;
this .next = null ;
}
}
public class LinkedList
{
public Node head;
public LinkedList()
{
this .head = null ;
}
public void SortedInsert(Node newNode)
{
if ( this .head == null )
{
this .head = newNode;
return ;
}
Node prev = null ;
Node current = this .head;
while (current != null && current.data < newNode.data)
{
prev = current;
current = current.next;
}
if (prev == null )
{
newNode.next = this .head;
this .head = newNode;
}
else
{
newNode.next = current;
prev.next = newNode;
}
}
public void PrintList()
{
Node temp = this .head;
while (temp != null )
{
Console.Write(temp.data + " " );
temp = temp.next;
}
Console.WriteLine();
}
}
public class Program
{
public static void Main()
{
LinkedList llist = new LinkedList();
Node newNode = new Node(5);
llist.SortedInsert(newNode);
newNode = new Node(10);
llist.SortedInsert(newNode);
newNode = new Node(7);
llist.SortedInsert(newNode);
newNode = new Node(3);
llist.SortedInsert(newNode);
newNode = new Node(1);
llist.SortedInsert(newNode);
newNode = new Node(9);
llist.SortedInsert(newNode);
Console.WriteLine( "Create Linked List" );
llist.PrintList();
}
}
|
Javascript
class Node {
constructor(data) {
this .data = data;
this .next = null ;
}
}
class LinkedList {
constructor() {
this .head = null ;
}
sortedInsert(newNode) {
if ( this .head == null ) {
this .head = newNode;
return ;
}
let prev = null ;
let current = this .head;
while (current != null && current.data < newNode.data) {
prev = current;
current = current.next;
}
if (prev == null ) {
newNode.next = this .head;
this .head = newNode;
} else {
newNode.next = current;
prev.next = newNode;
}
}
printList() {
let temp = this .head;
while (temp != null ) {
console.log(temp.data + " " );
temp = temp.next;
}
console.log();
}
}
let llist = new LinkedList();
let newNode = new Node(5);
llist.sortedInsert(newNode);
newNode = new Node(10);
llist.sortedInsert(newNode);
newNode = new Node(7);
llist.sortedInsert(newNode);
newNode = new Node(3);
llist.sortedInsert(newNode);
newNode = new Node(1);
llist.sortedInsert(newNode);
newNode = new Node(9);
llist.sortedInsert(newNode);
console.log( "Create Linked List" );
llist.printList();
|
Output
Create Linked List
1 3 5 7 9 10
The time complexity of this algorithm is O(n) where n is the number of nodes in the linked list.
The space complexity is O(1) as it uses constant extra space.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
18 May, 2023
Like Article
Save Article