Skip to content
Related Articles

Related Articles

Improve Article
Generate an array with product of all subarrays of length exceeding one divisible by K
  • Last Updated : 29 May, 2021

Given two positive integers N and K, the task is to generate an array of length N such that the product of every subarray of length greater than 1 must be divisible by K and the maximum element of the array must be less than K. If no such array is possible, then print -1.

Examples:

Input: N = 3, K = 20
Output: {15, 12, 5}
Explanation: All subarrays of length greater than 1 are {15, 12}, {12, 5}, {15, 12, 5} and their corresponding products are 180, 60 and 900, which are all divisible by 20.

Input: N = 4, K = 100
Output: {90, 90, 90, 90}

Approach: The given problem can be solved by the following observations:



It can be observed that by making the product of every subarray of length 2 divisible by K, the product of every subarray of length greater than 2 will automatically be divisible by K.

Therefore, the idea is to take two divisors of K, say d1 and d2, such that d1 * d2 = K and place them alternatively in the array. Follow the steps below to solve the problem:

  1. Initialize two integer variables d1 and d2.
  2. Check if K is prime. If found to be true, print -1.
  3. Otherwise, calculate the divisors of K and store two divisors in d1 and d2.
  4. After that, traverse from i = 0 to N – 1.
  5. Print d1 if i is even. Otherwise, print d2.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to check if the required
// array can be generated or not
void array_divisbleby_k(int N, int K)
{
    // To check if divisor exists
    bool flag = false;
 
    // To store divisiors of K
    int d1, d2;
 
    // Check if K is prime or not
    for (int i = 2; i * i <= K; i++) {
 
        if (K % i == 0) {
            flag = true;
            d1 = i;
            d2 = K / i;
            break;
        }
    }
 
    // If array can be generated
    if (flag) {
 
        // Print d1 and d2 alternatively
        for (int i = 0; i < N; i++) {
 
            if (i % 2 == 1) {
                cout << d2 << " ";
            }
            else {
                cout << d1 << " ";
            }
        }
    }
 
    else {
 
        // No such array can be generated
        cout << -1;
    }
}
// Driver Code
int main()
{
    // Given N and K
    int N = 5, K = 21;
 
    // Function Call
    array_divisbleby_k(N, K);
 
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
// Function to check if the required
// array can be generated or not
public static void array_divisbleby_k(int N,
                                      int K)
{
     
    // To check if divisor exists
    boolean flag = false;
   
    // To store divisiors of K
    int d1 = 0, d2 = 0;
   
    // Check if K is prime or not
    for(int i = 2; i * i <= K; i++)
    {
        if (K % i == 0)
        {
            flag = true;
            d1 = i;
            d2 = K / i;
            break;
        }
    }
   
    // If array can be generated
    if (flag)
    {
         
        // Print d1 and d2 alternatively
        for(int i = 0; i < N; i++)
        {
            if (i % 2 == 1)
            {
                System.out.print(d2 + " ");
            }
            else
            {
                System.out.print(d1 + " ");
            }
        }
    }
   
    else
    {
         
        // No such array can be generated
        System.out.print(-1);
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and K
    int N = 5, K = 21;
   
    // Function Call
    array_divisbleby_k(N, K);
}
}
 
// This code is contributed by divyesh072019

Python3




# Python3 program for the above approach
 
# Function to check if the required
# array can be generated or not
def array_divisbleby_k(N, K):
 
    # To check if divisor exists
    flag = False
 
    # To store divisiors of K
    d1, d2 = 0, 0
 
    # Check if K is prime or not
    for i in range(2, int(K ** (1 / 2)) + 1):
        if (K % i == 0):
            flag = True
            d1 = i
            d2 = K // i
            break
 
    # If array can be generated
    if (flag):
 
        # Print d1 and d2 alternatively
        for i in range(N):
            if (i % 2 == 1):
                print(d2, end = " ")
            else:
                print(d1, end = " ")
                 
    else:
 
        # No such array can be generated
        print(-1)
  
# Driver Code
if __name__ == "__main__":
 
    # Given N and K
    N = 5
    K = 21
 
    # Function Call
    array_divisbleby_k(N, K)
 
# This code is contributed by AnkThon

C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to check if the required
// array can be generated or not
public static void array_divisbleby_k(int N,
                                      int K)
{
     
    // To check if divisor exists
    bool flag = false;
     
    // To store divisiors of K
    int d1 = 0, d2 = 0;
   
    // Check if K is prime or not
    for(int i = 2; i * i <= K; i++)
    {
        if (K % i == 0)
        {
            flag = true;
            d1 = i;
            d2 = K / i;
            break;
        }
    }
   
    // If array can be generated
    if (flag)
    {
         
        // Print d1 and d2 alternatively
        for(int i = 0; i < N; i++)
        {
            if (i % 2 == 1)
            {
                Console.Write(d2 + " ");
            }
            else
            {
                Console.Write(d1 + " ");
            }
        }
    }
   
    else
    {
         
        // No such array can be generated
        Console.Write(-1);
    }
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given N and K
    int N = 5, K = 21;
   
    // Function Call
    array_divisbleby_k(N, K);
}
}
 
// This code is contributed by AnkThon

Javascript




<script>
    // Javascript program for the above approach
     
    // Function to check if the required
    // array can be generated or not
    function array_divisbleby_k(N, K)
    {
 
        // To check if divisor exists
        let flag = false;
 
        // To store divisiors of K
        let d1 = 0, d2 = 0;
 
        // Check if K is prime or not
        for(let i = 2; i * i <= K; i++)
        {
            if (K % i == 0)
            {
                flag = true;
                d1 = i;
                d2 = K / i;
                break;
            }
        }
 
        // If array can be generated
        if (flag)
        {
 
            // Print d1 and d2 alternatively
            for(let i = 0; i < N; i++)
            {
                if (i % 2 == 1)
                {
                    document.write(d2 + " ");
                }
                else
                {
                    document.write(d1 + " ");
                }
            }
        }
 
        else
        {
 
            // No such array can be generated
            document.write(-1);
        }
    }
     
    // Given N and K
    let N = 5, K = 21;
    
    // Function Call
    array_divisbleby_k(N, K);
 
// This code is contributed by suresh07.
</script>

Output:

3 7 3 7 3

Time complexity: O(N + √K)
Auxiliary space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :