Skip to content
Related Articles

Related Articles

Improve Article

Finding Median in a Sorted Linked List

  • Difficulty Level : Medium
  • Last Updated : 08 Jun, 2021

Given A sorted linked list of N    elements. The task is to find the median in the given Sorted Linked List.
We know that median in a sorted array is the middle element.

Procedure to find median of N sorted numbers:  

if N is odd:
    median is N/2th element
else
    median is N/2th element + (N/2+1)th element

Examples: 

Input : 1->2->3->4->5->NULL
Output : 3

Input : 1->2->3->4->5->6->NULL
Output : 3.5

Simple approach  

  1. Traverse the linked list and count all elements.
  2. if count is odd then again traverse the linked list and find n/2th element.
  3. if count is even then again traverse the linked list and find: 
    (n/2th element+ (n/2+1)th element)/2

Note: The above solution traverse the linked list two times.



Efficient Approach: an efficient approach is to traverse the list using two pointers to find the number of elements. See method 2 of this post.
We can use the above algorithm for finding the median of the linked list. Using this algorithm we won’t need to count the number of element: 

  1. if the fast_ptr is Not NULL then it means linked list contain odd element we simply print the data of the slow_ptr.
  2. else if fast_ptr reach to NULL its means linked list contain even element we create backup of the previous node of slow_ptr and print (previous node of slow_ptr+ slow_ptr->data)/2

Below is the implementation of the above approach:  

C++




// C++ program to find median
// of a linked list
#include <bits/stdc++.h>
using namespace std;
 
// Link list node
struct Node {
    int data;
    struct Node* next;
};
 
/* Function to get the median of the linked list */
void printMidean(Node* head)
{
    Node* slow_ptr = head;
    Node* fast_ptr = head;
    Node* pre_of_slow = head;
 
    if (head != NULL) {
        while (fast_ptr != NULL && fast_ptr->next != NULL) {
 
            fast_ptr = fast_ptr->next->next;
 
            // previous of slow_ptr
            pre_of_slow = slow_ptr;
            slow_ptr = slow_ptr->next;
        }
 
        // if the below condition is true linked list
        // contain odd Node
        // simply return middle element
        if (fast_ptr != NULL)
            cout << "Median is : " << slow_ptr->data;
 
        // else linked list contain even element
        else
            cout << "Median is : "
                 << float(slow_ptr->data + pre_of_slow->data) / 2;
    }
}
 
/* Given a reference (pointer to
    pointer) to the head of a list
    and an int, push a new node on
    the front of the list. */
void push(struct Node** head_ref, int new_data)
{
    // allocate node
    Node* new_node = new Node;
 
    // put in the data
    new_node->data = new_data;
 
    // link the old list
    // off the new node
    new_node->next = (*head_ref);
 
    // move the head to point
    // to the new node
    (*head_ref) = new_node;
}
 
// Driver Code
int main()
{
    // Start with the
    // empty list
    struct Node* head = NULL;
 
    // Use push() to construct
    // below list
    // 1->2->3->4->5->6
    push(&head, 6);
    push(&head, 5);
    push(&head, 4);
    push(&head, 3);
    push(&head, 2);
    push(&head, 1);
 
    // Check the count
    // function
    printMidean(head);
 
    return 0;
}

Java




// Java program to find median
// of a linked list
class GFG
{
 
    // Link list node
    static class Node
    {
 
        int data;
        Node next;
    };
 
    /* Function to get the median of the linked list */
    static void printMidean(Node head)
    {
        Node slow_ptr = head;
        Node fast_ptr = head;
        Node pre_of_slow = head;
 
        if (head != null)
        {
            while (fast_ptr != null && fast_ptr.next != null)
            {
 
                fast_ptr = fast_ptr.next.next;
 
                // previous of slow_ptr
                pre_of_slow = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            // if the below condition is true linked list
            // contain odd Node
            // simply return middle element
            if (fast_ptr != null)
            {
                System.out.print("Median is : " + slow_ptr.data);
            }
             
            // else linked list contain even element
            else
            {
                System.out.print("Median is : "
                        + (float) (slow_ptr.data + pre_of_slow.data) / 2);
            }
        }
    }
 
    /* Given a reference (pointer to
    pointer) to the head of a list
    and an int, push a new node on
    the front of the list. */
    static Node push(Node head_ref, int new_data)
    {
        // allocate node
        Node new_node = new Node();
 
        // put in the data
        new_node.data = new_data;
 
        // link the old list
        // off the new node
        new_node.next = head_ref;
 
        // move the head to point
        // to the new node
        head_ref = new_node;
        return head_ref;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Start with the
        // empty list
        Node head = null;
 
        // Use push() to construct
        // below list
        // 1.2.3.4.5.6
        head = push(head, 6);
        head = push(head, 5);
        head = push(head, 4);
        head = push(head, 3);
        head = push(head, 2);
        head = push(head, 1);
 
        // Check the count
        // function
        printMidean(head);
    }
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 program to find median
# of a linked list
class Node:
     
    def __init__(self, value):
         
        self.data = value
        self.next = None
     
class LinkedList:
 
    def __init__(self):
         
        self.head = None
 
    # Create Node and and make linked list
    def push(self, new_data):
         
        new_node = Node(new_data)
        new_node.next = self.head
        self.head = new_node
         
    # Function to get the median
    # of the linked list   
    def printMedian(self):
         
        slow_ptr = self.head
        fast_ptr = self.head
        pre_of_show = self.head
        count = 0
         
        while (fast_ptr != None and
               fast_ptr.next != None):
            fast_ptr = fast_ptr.next.next
             
            # Previous of slow_ptr
            pre_of_slow = slow_ptr
            slow_ptr = slow_ptr.next
        # If the below condition is true
        # linked list contain odd Node
        # simply return middle element   
        if (fast_ptr):
            print("Median is :", (slow_ptr.data))
             
        # Else linked list contain even element
        else:
            print("Median is :", (slow_ptr.data +
                                  pre_of_slow.data) / 2)
                                   
# Driver code
llist = LinkedList()
 
# Use push() to construct
# below list
# 1->2->3->4->5->6
llist.push(6)
llist.push(5)
llist.push(4)
llist.push(3)
llist.push(2)
llist.push(1)
 
# Check the count
# function
llist.printMedian()
 
# This code is contributed by grand_master

C#




// C# program to find median
// of a linked list
using System;
 
class GFG
{
 
    // Link list node
    class Node
    {
 
        public int data;
        public Node next;
    };
 
    /* Function to get the median
    of the linked list */
    static void printMidean(Node head)
    {
        Node slow_ptr = head;
        Node fast_ptr = head;
        Node pre_of_slow = head;
 
        if (head != null)
        {
            while (fast_ptr != null &&
                   fast_ptr.next != null)
            {
                fast_ptr = fast_ptr.next.next;
 
                // previous of slow_ptr
                pre_of_slow = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            // if the below condition is true linked list
            // contain odd Node
            // simply return middle element
            if (fast_ptr != null)
            {
                Console.Write("Median is : " +
                               slow_ptr.data);
            }
             
            // else linked list contain even element
            else
            {
                Console.Write("Median is : " +
                       (float)(slow_ptr.data +
                               pre_of_slow.data) / 2);
            }
        }
    }
 
    /* Given a reference (pointer to
    pointer) to the head of a list
    and an int, push a new node on
    the front of the list. */
    static Node push(Node head_ref, int new_data)
    {
        // allocate node
        Node new_node = new Node();
 
        // put in the data
        new_node.data = new_data;
 
        // link the old list
        // off the new node
        new_node.next = head_ref;
 
        // move the head to point
        // to the new node
        head_ref = new_node;
        return head_ref;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        // Start with the
        // empty list
        Node head = null;
 
        // Use push() to construct
        // below list
        // 1->2->3->4->5->6
        head = push(head, 6);
        head = push(head, 5);
        head = push(head, 4);
        head = push(head, 3);
        head = push(head, 2);
        head = push(head, 1);
 
        // Check the count
        // function
        printMidean(head);
    }
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript program to find median
// of a linked list
 
// A linked list node
class Node {
        constructor() {
                this.data = 0;
                this.next = null;
             }
        }
         
    /* Function to get the median of the linked list */
    function printMidean( head)
    {
        var slow_ptr = head;
        var fast_ptr = head;
        var pre_of_slow = head;
 
        if (head != null)
        {
            while (fast_ptr != null && fast_ptr.next != null)
            {
 
                fast_ptr = fast_ptr.next.next;
 
                // previous of slow_ptr
                pre_of_slow = slow_ptr;
                slow_ptr = slow_ptr.next;
            }
 
            // if the below condition is true linked list
            // contain odd Node
            // simply return middle element
            if (fast_ptr != null)
            {
                document.write("Median is : " + slow_ptr.data);
            }
             
            // else linked list contain even element
            else
            {
                document.write("Median is : "
                        +  (slow_ptr.data + pre_of_slow.data) / 2);
            }
        }
    }
 
    /* Given a reference (pointer to
    pointer) to the head of a list
    and an int, push a new node on
    the front of the list. */
    function push( head_ref,  new_data)
    {
        // allocate node
        var new_node = new Node();
 
        // put in the data
        new_node.data = new_data;
 
        // link the old list
        // off the new node
        new_node.next = head_ref;
 
        // move the head to point
        // to the new node
        head_ref = new_node;
        return head_ref;
    }
 
 
// Driver Code
 
// Start with the
// empty list
var head = null;
 
// Use push() to construct
// below list
// 1.2.3.4.5.6
head = push(head, 6);
head = push(head, 5);
head = push(head, 4);
head = push(head, 3);
head = push(head, 2);
head = push(head, 1);
 
// Check the count
// function
printMidean(head);
 
// This code is contributed by jana_sayantan.
</script>
Output: 
Median is : 3.5

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :