# Find the winner of the match | Multiple Queries

Given an array of pairs **arr** of size **N** which represents a game situation where the first player wins against the second player. Given multiple queries, each query contains two numbers, the task is to determine which one of them will win if they compete with each other.

**NOTE:**

- If
**A**wins over**B**and**B**wins over**C**, then**A**will always win over**C**. - If
**A**wins over**B**and**A**wins over**C**, if there is a match against**B**and**C**and if we couldn’t determine the winner then the player with smaller number wins

**Examples:**

Input :arr[] = {{0, 1}, {0, 2}, {0, 3}, {1, 5}, {2, 5}, {3, 4}, {4, 5}, {6, 0}}

query[] = {{3, 5}, {1, 2}}

Output :5

1

Explanation :4 wins over 3 and 5 wins over 4. So, 5 is the winner in the first match.

We can’t determine the winner between 1 and 2. So, the player with a smaller number is the winner i.e., 1

Input :arr[] = {{0, 1}, {0, 2}, {0, 3}, {1, 5}, {2, 5}, {3, 4}, {4, 5}, {6, 0}}

query[] = {{0, 5}, {0, 6}}

Output :5

0

**Prerequisites:** Topological Sort

**Approach:**

Let’s assume that all the inputs are valid. Now build a graph. If playerX wins over playerY then we add an edge from playerX to playerY. After building the graph do topological sorting. For every query of the form (x, y) we check which number x or y comes before in topological ordering and print the answer.

Below is the implementation of the above approach :

`// C++ program to find winner of the match ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to add edge between two nodes ` `void` `add(vector<` `int` `> adj[], ` `int` `u, ` `int` `v) ` `{ ` ` ` `adj[u].push_back(v); ` `} ` ` ` `// Function returns topological order of given graph ` `vector<` `int` `> topo(vector<` `int` `> adj[], ` `int` `n) ` `{ ` ` ` `// Indeg vector will store ` ` ` `// indegrees of all vertices ` ` ` `vector<` `int` `> indeg(n, 0); ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `for` `(` `auto` `x : adj[i]) ` ` ` `indeg[x]++; ` ` ` `} ` ` ` `// Answer vector will have our ` ` ` `// final topological order ` ` ` `vector<` `int` `> answer; ` ` ` ` ` `// Visited will be true if that ` ` ` `// vertex has been visited ` ` ` `vector<` `bool` `> visited(n, ` `false` `); ` ` ` ` ` `// q will store the vertices ` ` ` `// that have indegree equal to zero ` ` ` `queue<` `int` `> q; ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `if` `(indeg[i] == 0) { ` ` ` `q.push(i); ` ` ` `visited[i] = ` `true` `; ` ` ` `} ` ` ` `} ` ` ` ` ` `// Iterate till queue is not empty ` ` ` `while` `(!q.empty()) { ` ` ` `int` `u = q.front(); ` ` ` `// Push the front of queue to answer ` ` ` `answer.push_back(u); ` ` ` `q.pop(); ` ` ` ` ` `// For all neighbours of u, decrement ` ` ` `// their indegree value ` ` ` `for` `(` `auto` `x : adj[u]) { ` ` ` `indeg[x]--; ` ` ` ` ` `// If indegree of any vertex becomes zero and ` ` ` `// it is not marked then push it to queue ` ` ` `if` `(indeg[x] == 0 && !visited[x]) { ` ` ` `q.push(x); ` ` ` `// Mark this vertex as visited ` ` ` `visited[x] = ` `true` `; ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// Return the resultant topological order ` ` ` `return` `answer; ` `} ` `// Function to return the winner between u and v ` `int` `who_wins(vector<` `int` `> topotable, ` `int` `u, ` `int` `v) ` `{ ` ` ` `// Player who comes first wins ` ` ` `for` `(` `auto` `x : topotable) { ` ` ` `if` `(x == u) ` ` ` `return` `u; ` ` ` `if` `(x == v) ` ` ` `return` `v; ` ` ` `} ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `vector<` `int` `> adj[10]; ` ` ` ` ` `// Total number of players ` ` ` `int` `n = 7; ` ` ` ` ` `// Build the graph ` ` ` `// add(adj, x, y) means x wins over y ` ` ` `add(adj, 0, 1); ` ` ` `add(adj, 0, 2); ` ` ` `add(adj, 0, 3); ` ` ` `add(adj, 1, 5); ` ` ` `add(adj, 2, 5); ` ` ` `add(adj, 3, 4); ` ` ` `add(adj, 4, 5); ` ` ` `add(adj, 6, 0); ` ` ` ` ` `// Resultant topological order in topotable ` ` ` `vector<` `int` `> topotable = topo(adj, n); ` ` ` ` ` `// Queries ` ` ` `cout << who_wins(topotable, 3, 5) << endl; ` ` ` `cout << who_wins(topotable, 1, 2) << endl; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

**Output:**

3 1

## Recommended Posts:

- Find the largest possible k-multiple set
- Queries to update a given index and find gcd in range
- Range Queries to Find number of sub-arrays with a given xor
- Find memory conflicts among multiple threads
- Quickly find multiple left rotations of an array | Set 1
- Find any one of the multiple repeating elements in read only array
- Find the smallest binary digit multiple of given number
- Queries to find the maximum Xor value between X and the nodes of a given level of a perfect binary tree
- Find the largest multiple of 3 from array of digits | Set 2 (In O(n) time and O(1) space)
- Queries to find the first non-repeating character in the sub-string of a string
- Find the Initial Array from given array after range sum queries
- Predict the winner of the game on the basis of absolute difference of sum by selecting numbers
- Array range queries over range queries
- Queries for greater than and not less than
- Submatrix Sum Queries

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.