Open In App
Related Articles

Find the total number of composite factor for a given number

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an integer N, the task is to find the total number of composite factors of N. Composite factors of a number are the factors which are not prime.
Examples: 
 

Input: N = 24 
Output:
1, 2, 3, 4, 6, 8, 12 and 24 are the factors of 24. 
Out of which only 4, 6, 8, 12 and 24 are composites.
Input: N = 100 
Output:
 


 


Approach: 
 

  • Find all the factors of N and store it in a variable totalFactors
  • Find all the prime factors of N and store it in a variable primeFactors
  • Now, total composite factors will be totalFactors – primeFactors – 1 (1 is subtracted because 1 is neither prime nor composite).


Below is the implementation of the above approach: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of prime factors of n
int composite_factors(int n)
{
    int count = 0;
    int i, j;
 
    // Initialise array with 0
    int a[n + 1] = { 0 };
    for (i = 1; i <= n; ++i) {
        if (n % i == 0) {
 
            // Stored i value into an array
            a[i] = i;
        }
    }
 
    // Every non-zero value at a[i] denotes
    // that i is a factor of n
    for (i = 2; i <= n; i++) {
        j = 2;
        int p = 1;
 
        // Find if i is prime
        while (j < a[i]) {
            if (a[i] % j == 0) {
                p = 0;
                break;
            }
            j++;
        }
 
        // If i is a factor of n
        // and i is not prime
        if (p == 0 && a[i] != 0) {
            count++;
        }
    }
 
    return count;
}
 
// Driver code
int main()
{
    int n = 100;
 
    cout << composite_factors(n);
 
    return 0;
}

                    

Java

// Java implementation of the approach
import java.util.*;
 
class Gfg
{
 
// Function to return the count
// of prime factors of n
public static int composite_factors(int n)
{
    int count = 0;
    int i, j;
 
    // Initialise array with 0
    int[] a=new int[n+1];
    for( i = 0; i < n; i++)
    {
        a[i]=0;
    }
    for (i = 1; i <= n; ++i)
    {
        if (n % i == 0)
        {
 
            // Stored i value into an array
            a[i] = i;
        }
    }
 
    // Every non-zero value at a[i] denotes
    // that i is a factor of n
    for (i = 2; i <= n; i++)
    {
        j = 2;
        int p = 1;
 
        // Find if i is prime
        while (j < a[i])
        {
            if (a[i] % j == 0)
            {
                p = 0;
                break;
            }
            j++;
        }
 
        // If i is a factor of n
        // and i is not prime
        if (p == 0 && a[i] != 0)
        {
            count++;
        }
     
}
    return count;
}
 
 
// Driver code
public static void main(String[] args)
{
    int n = 100;
     
    System.out.println(composite_factors(n));
 
}
}
 
// This code is contributed by nidhi16bcs2007

                    

Python3

# Python3 implementation of the approach
 
# Function to return the count
# of prime factors of n
def composite_factors(n) :
 
    count = 0;
     
    # Initialise array with 0
    a = [0]*(n + 1) ;
     
    for i in range(1, n + 1) :
        if (n % i == 0) :
 
            # Stored i value into an array
            a[i] = i;
 
    # Every non-zero value at a[i] denotes
    # that i is a factor of n
    for i in range(2,n + 1) :
        j = 2;
        p = 1;
 
        # Find if i is prime
        while (j < a[i]) :
            if (a[i] % j == 0) :
                p = 0;
                break;
                 
            j += 1;
 
 
        # If i is a factor of n
        # and i is not prime
        if (p == 0 and a[i] != 0) :
            count += 1;
 
    return count;
 
 
# Driver code
if __name__ == "__main__" :
 
    n = 100;
 
    print(composite_factors(n));
     
# This code is contributed by AnkitRai01

                    

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count
// of prime factors of n
static int composite_factors(int n)
{
    int count = 0;
    int i, j;
 
    // Initialise array with 0
    int[] a = new int[n + 1];
    for( i = 0; i < n; i++)
    {
        a[i]=0;
    }
    for (i = 1; i <= n; ++i)
    {
        if (n % i == 0)
        {
 
            // Stored i value into an array
            a[i] = i;
        }
    }
 
    // Every non-zero value at a[i] denotes
    // that i is a factor of n
    for (i = 2; i <= n; i++)
    {
        j = 2;
        int p = 1;
 
        // Find if i is prime
        while (j < a[i])
        {
            if (a[i] % j == 0)
            {
                p = 0;
                break;
            }
            j+=1;
        }
 
        // If i is a factor of n
        // and i is not prime
        if (p == 0 && a[i] != 0)
        {
            count += 1;
        }
 
}
    return count;
}
 
 
// Driver code
public static void Main()
{
    int n = 100;
 
    Console.WriteLine(composite_factors(n));
}
}
 
// This code is contributed by mohit kumar 29

                    

Javascript

<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of prime factors of n
function composite_factors(n)
{
    var count = 0;
    var i, j;
 
    // Initialise array with 0
    var a = Array(n + 1).fill(0);
    for (i = 1; i <= n; ++i) {
        if (n % i == 0) {
 
            // Stored i value into an array
            a[i] = i;
        }
    }
 
    // Every non-zero value at a[i] denotes
    // that i is a factor of n
    for (i = 2; i <= n; i++) {
        j = 2;
        var p = 1;
 
        // Find if i is prime
        while (j < a[i]) {
            if (a[i] % j == 0) {
                p = 0;
                break;
            }
            j++;
        }
 
        // If i is a factor of n
        // and i is not prime
        if (p == 0 && a[i] != 0) {
            count++;
        }
    }
 
    return count;
}
 
// Driver code
    var n = 100;
 
    document.write(composite_factors(n));
 
</script>

                    

Output: 
6

 

Time Complexity: O(n*val) where n is the given number and val is the largest factor of n.

Auxiliary Space: O(n)



Last Updated : 31 May, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads